MIT OpenCourseWare
http://ocw.mit.edu

18.102 Introduction to Functional Analysis

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 24. Thursday, May 7: Completeness of Hermite basis

Here is what I claim was done last time. Starting from the ground state for the harmonic oscillator

$$
\begin{equation*}
H=-\frac{d^{2}}{d x^{2}}+x^{2}, H u_{0}=u_{0}, u_{0}=e^{-x^{2} / 2} \tag{24.1}
\end{equation*}
$$

and using the creation and annihilation operators

$$
\begin{equation*}
A=\frac{d}{d x}+x, C=-\frac{d}{d x}+x, A C-C A=2 \mathrm{Id}, H=C A+\mathrm{Id} \tag{24.2}
\end{equation*}
$$

I examined the higher eigenfunctions:

$$
\begin{equation*}
u_{j}=C^{j} u_{0}=p_{j}(x) u_{0}(c), p(x)=2^{j} x^{j}+\text { l.o.ts, } H u_{j}=(2 j+1) u_{j} \tag{24.3}
\end{equation*}
$$

and showed that these are orthogonal, $u_{j} \perp u_{k}, j \neq k$, and so when normalized give an orthonormal system in $L^{2}(\mathbb{R})$:

$$
\begin{equation*}
e_{j}=\frac{u_{j}}{2^{j / 2}(j!)^{\frac{1}{2}} \pi^{\frac{1}{4}}} \tag{24.4}
\end{equation*}
$$

Now, what I want to show today, and not much more, is that the e_{j} form an orthonormal basis of $L^{2}(\mathbb{R})$, meaning they are complete as an orthonormal sequence. There are various proofs of this, but the only 'simple' ones I know involve the Fourier inversion formula and I want to use the completeness to prove the Fourier inversion formula, so that will not do. Instead I want to use a version of Mehler's formula. I also tried to motivate this a bit last time.

Namely, I suggested that to show the completeness of the e_{j} 's it is enough to find a compact self-adjoint operator with these as eigenfunctions and no null space. It is the last part which is tricky. The first part is easy. Remembering that all the e_{j} are real, we can find an operator with the $e_{j} ;$ s as eigenfunctions with corresponding eigenvalues $\lambda_{j}>0$ (say) by just defining

$$
\begin{equation*}
A u(x)=\sum_{j=0}^{\infty} \lambda_{j}\left(u, e_{j}\right) e_{j}(x)=\sum_{j=0}^{\infty} \lambda_{j} e_{j}(x) \int e_{j}(y) u(y) \tag{24.5}
\end{equation*}
$$

For this to be an operator we need $\lambda_{j} \rightarrow 0$ as $j \rightarrow \infty$, although for convergence we just need the λ_{j} to be bounded. So, the problem with this is to show that A has no null space - which of course is just the completeness of the e_{j}^{\prime} since (assuming all the λ_{j} are positive)

$$
\begin{equation*}
A u=0 \Longleftrightarrow u \perp e_{j} \forall j \tag{24.6}
\end{equation*}
$$

Nevertheless, this is essentially what we will do. The idea is to write A as an integral operator and then work with that. I will take the $\lambda_{j}=w^{j}$ where $w \in[0,1)$. The point is that we can find an explicit formula for

$$
\begin{equation*}
A_{w} u=\sum_{j=0}^{\infty} w^{j} e_{j}(x) e_{j}(y)=A(w, x, y) \tag{24.7}
\end{equation*}
$$

I struggled a bit with this in class but did pretty much manage to do it.

To find $A(w, x, y)$ we use some other things I did last time. First, I defined the Fourier transform and showed its basic propertyL

$$
\begin{align*}
& \mathcal{F}: L^{1}(\mathbb{R}) \longrightarrow \mathcal{C}_{\infty}^{0}(\mathbb{R}), \mathcal{F}(u)=\hat{u}, \tag{24.8}\\
& \hat{u}(\xi)=\int e^{-i x \xi} u(x), \sup |\hat{u}| \leq\|u\|_{L^{1}}
\end{align*}
$$

Then I computed the Fourier transform of u_{0}, namely

$$
\begin{equation*}
\left(\mathcal{F} u_{0}\right)(\xi)=\sqrt{2 \pi} u_{0}(\xi) \tag{24.9}
\end{equation*}
$$

Now, we can use this formula, of if you like the argument to prove it, to show that

$$
\begin{equation*}
v=e^{-x^{2} / 4} \Longrightarrow \hat{v}=\sqrt{\pi} e^{-\xi^{2}} . \tag{24.10}
\end{equation*}
$$

Changing the names of the variables this just says

$$
\begin{equation*}
e^{-x^{2}}=\frac{1}{2 \sqrt{\pi}} \int_{\mathbb{R}} e^{i x s-s^{2} / 4} d s \tag{24.11}
\end{equation*}
$$

Now, again as I discussed last time, the definition of the u_{j} 's can be rewritten

$$
\begin{equation*}
u_{j}(x)=\left(-\frac{d}{d x}+x\right)^{j} e^{-x^{2} / 2}=e^{x^{2} / 2}\left(-\frac{d}{d x}\right)^{j} e^{-x^{2}} \tag{24.12}
\end{equation*}
$$

Plugging this into (24.11) and carrying out the derivatives - which is legitimate since the integral is so strongly convergent - gives

$$
\begin{equation*}
u_{j}(x)=\frac{e^{x^{2} / 2}}{2 \sqrt{\pi}} \int_{\mathbb{R}}(-i s)^{j} e^{i x s-s^{2} / 4} d s \tag{24.13}
\end{equation*}
$$

Now we can use this formula twice on the sum on the left in (24.7) and insert the normalizations in (24.4) to find that

$$
\begin{equation*}
\sum_{j=0}^{\infty} w^{j} e_{j}(x) e_{j}(y)=\sum_{j=0}^{\infty} \frac{e^{x^{2} / 2+y^{2} / 2}}{4 \pi^{3 / 2}} \int_{\mathbb{R}^{2}} \frac{(-1)^{j} w^{j} s^{j} t^{j}}{2^{j} j!} e^{i s x+i t y-s^{2} / 4-t^{2} / 4} d s d t \tag{24.14}
\end{equation*}
$$

The crucial thing here is that we can sum the series to get an exponential, this allows us to finally conclude:

Lemma 19. The identity (24.7) holds with

$$
\begin{equation*}
A(w, x, y)=\frac{1}{\sqrt{\pi} \sqrt{1-w^{2}}} \exp \left(-\frac{1-w}{4(1+w)}(x+y)^{2}-\frac{1+w}{4(1-w)}(x-y)^{2}\right) \tag{24.15}
\end{equation*}
$$

Proof. Summing the series in (24.14) we find that

$$
\begin{equation*}
A(w, x, y)=\frac{e^{x^{2} / 2+y^{2} / 2}}{4 \pi^{3 / 2}} \int_{\mathbb{R}^{2}} \exp \left(-\frac{1}{2} w s t+i s x+i t y-s^{2} / 4-t^{2} / 4\right) d s d t \tag{24.16}
\end{equation*}
$$

Now, we can use the same formula as before for the Fourier transform of u_{0} to evaluate these integrals explicitly. I think the clever way, better than what I did in lecture, is to change variables by setting

$$
\begin{aligned}
& \text { (24.17) } s=(S+T) / \sqrt{2}, t=(S-T) / \sqrt{2} \Longrightarrow d s d t=d S d T \\
& -\frac{1}{2} w s t+i s x+i t y-s^{2} / 4-t^{2} / 4=i S \frac{x+y}{\sqrt{2}}-\frac{1}{4}(1+w) S^{2} i T \frac{x-y}{\sqrt{2}}-\frac{1}{4}(1-w) T^{2} .
\end{aligned}
$$

The formula for the Fourier transform of $\exp \left(-x^{2}\right)$ can be used, after a change of variable, to conclude that

$$
\begin{align*}
& \int_{\mathbb{R}} \exp \left(i S \frac{x+y}{\sqrt{2}}-\frac{1}{4}(1+w) S^{2}\right) d S=\frac{2 \sqrt{\pi}}{\sqrt{(1+w)}} \exp \left(-\frac{(x+y)^{2}}{2(1+w)}\right) \tag{24.18}\\
& \int_{\mathbb{R}} \exp \left(i T \frac{x-y}{\sqrt{2}}-\frac{1}{4}(1-w) T^{2}\right) d T=\frac{2 \sqrt{\pi}}{\sqrt{(1-w)}} \exp \left(-\frac{(x-y)^{2}}{2(1-w)}\right)
\end{align*}
$$

Inserting these formulæ back into (24.16) gives

$$
\begin{equation*}
A(w, x, y)=\frac{1}{\sqrt{\pi} \sqrt{1-w^{2}}} \exp \left(-\frac{(x+y)^{2}}{2(1+w)}-\frac{(x-y)^{2}}{2(1-w)}+\frac{x^{2}}{2}+\frac{y^{2}}{2}\right) \tag{24.19}
\end{equation*}
$$

which after a little adjustment gives (24.15).
Now, this explicit representation of A_{w} as an integral operator allows us to show
Proposition 31. For all real-valued $f \in L^{2}(\mathbb{R})$,

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|\left(u, e_{j}\right)\right|^{2}=\|f\|_{L^{2}}^{2} \tag{24.20}
\end{equation*}
$$

Proof. By definition of A_{w}

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|\left(u, e_{j}\right)\right|^{2}=\lim _{w \uparrow 1}\left(f, A_{w} f\right) \tag{24.21}
\end{equation*}
$$

so (24.20) reduces to

$$
\begin{equation*}
\lim _{w \uparrow 1}\left(f, A_{w} f\right)=\|f\|_{L^{2}}^{2} \tag{24.22}
\end{equation*}
$$

To prove (24.22) we will make our work on the integral operators rather simpler by assuming first that $f \in \mathcal{C}^{0}(\mathbb{R})$ is continuous and vanishes outside some bounded interval, $f(x)=0$ in $|x|>R$. Then we can write out the L^{2} inner product as a doulbe integral, which is a genuine (iterated) Riemann integral:

$$
\begin{equation*}
\left(f, A_{w} f\right)=\iint A(w, x, y) f(x) f(y) d y d x \tag{24.23}
\end{equation*}
$$

Here I have used the fact that f and A are real-valued.
Look at the formula for A in (24.15). The first thing to notice is the factor $\left(1-w^{2}\right)-\frac{1}{2}$ which blows up as $w \rightarrow 1$. On the other hand, the argument of the exponential has two terms, the first tends to 0 as $w \rightarrow 1$ and the second blows up, at least when $x-y \neq 0$. Given the signs, we see that

$$
\begin{align*}
& \text { if } \epsilon>0, X=\{(x, y) ;|x| \leq R,|y| \leq R,|x-y| \geq \epsilon\} \text { then } \\
& \sup _{X}|A(w, x, y)| \rightarrow 0 \text { as } w \rightarrow 1 . \tag{24.24}
\end{align*}
$$

So, the part of the integral in (24.23) over $|x-y| \geq \epsilon$ tends to zero as $w \rightarrow 1$.
So, look at the other part, where $|x-y| \leq \epsilon$. By the (uniform) continuity of f, given $\delta>0$ there exits $\epsilon>0$ such that

$$
\begin{equation*}
|x-y| \leq \epsilon \Longrightarrow|f(x)-f(y)| \leq \delta \tag{24.25}
\end{equation*}
$$

Now we can divide (24.23) up into three pieces:-

$$
\begin{align*}
\left(f, A_{w} f\right) & =\int_{S \cap\{|x-y| \geq \epsilon\}} A(w, x, y) f(x) f(y) d y d x \tag{24.26}\\
& +\int_{S \cap\{|x-y| \leq \epsilon\}} A(w, x, y)(f(x)-f(y)) f(y) d y d x \\
& +\int_{S \cap\{|x-y| \leq \epsilon\}} A(w, x, y) f(y)^{2} d y d x
\end{align*}
$$

where $S=[-R, R]^{2}$.
Look now at the third integral in (24.26) since it is the important one. We can change variable of integration from x to $t=\sqrt{\frac{1+w}{1-w}}(x-y)$ and then this becomes

$$
\begin{gather*}
\int_{S \cap\{|x-y| \leq \epsilon\}} A\left(w, y+t \sqrt{\frac{1-w}{1+w}}, y\right) f(y)^{2} d y d t \\
A\left(w, y+t \sqrt{\frac{1-w}{1+w}}, y\right) \tag{24.27}\\
=\frac{1}{\sqrt{\pi}(1+w)} \exp \left(-\frac{1-w}{4(1+w)}(2 y+t \sqrt{1-w})^{2}\right) \exp \left(-\frac{t^{2}}{4}\right) .
\end{gather*}
$$

Here y is bounded; the first exponential factor tends to 1 so it is straightforward to show that for any $\epsilon>0$ the third term in (24.26) tends to

$$
\begin{equation*}
\|f\|_{L^{2}}^{2} \text { as } w \rightarrow 1 \text { since } \int e^{-t^{2} / 4}=2 \sqrt{\pi} \tag{24.28}
\end{equation*}
$$

Noting that $A \geq 0$ the same sort of argument shows that the second term is bounded by a constant multiple of δ. So this proves (24.22) (first choose δ then ϵ) and hence (24.20) under the assumption that f is continuous and vanishes outside some interval $[-R, R]$.

However, the general case follows by continuity since such continuous functions vanishing outside compact sets are dense in $L^{2}(\mathbb{R})$ and both sides of (24.20) are continuous in $f \in L^{2}(\mathbb{R})$.

Now, (24.22) certainly implies that the e_{j} form an orthonormal basis, which is what we wanted to show - but hard work! I did it really to remind you of how we did the Fourier series computation of the same sort and to suggest that you might like to compare the two arguments.

