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Lecture 23. Tuesday, May 5: Harmonic oscillator 

As a second ‘serious’ application of at least the completeness part of the spectral 
theorem for self-adjoint compact operators, I want to discuss the Hermite basis for 
L2(R). Note that so far we have not found an explicit orthonormal basis on the 
whole real line, even though we know L2(R) to be separable, so we certainly know 
that such a basis exists. How to construct one explicitly and with some handy 
properties? One way is to simply orthonormalize – using Gramm-Schmidt – some 
countable set with dense span. For instance consider the basic Gaussian function 

2 

(23.1) exp(− 
x

) ∈ L2(R).
2 

This is so rapidly decreasing at infinity that the product with any polynomial is 
also square integrable: 

2 

(23.2) x k exp(− 
x

) ∈ L2(R) ∀ k ∈ N0 = {0, 1, 2, . . . }.
2 

Orthonormalizing this sequence gives an orthonormal basis, where completeness 
can be shown by an appropriate approximation technique. 

Rather than proceed directly we will discuss the invertibility of the harmonic 
oscillator 

d2 

(23.3) H = − + x 2 

dx2 

which we want to think of as an operator – although for the moment I will leave 
vague the question of what it operates on. 

The first thing to observe is that the Gaussian is an eigenfunction of H 

2 d 2 2
(23.4) He−x /2 = − (−xe−x /2 + x 2 e−x /2 

dx 

− (x 2 − 1)e−x 2 /2 + x 2 e−x 2 /2 = e−x 2/2 

with eigenvalue 1 – for the moment this is only in a formal sense. 
In this special case there is an essentially algebraic way to generate a whole 

sequence of eigenfunctions from the Gaussian. To do this, write 

d d
(23.5) Hu = (− + x)( + x)u + u = (CA + 1)u,

dx dx 
d d 

C = (− + x), A = ( + x)
dx dx 

again formally as operators. Then note that 

(23.6) Ae−x 2/2 = 0 

which again proves (23.4). The two operators in (23.5) are the ‘creation’ operator 
and the ‘annihilation’ operator. They almost commute in the sense that 

(23.7) (AC − CA)u = 2u 

for say any twice continuously differentiable function u. 
Now, set u0 = e−x 2/2 which is the ‘ground state’ and consider u1 = Cu0. From 

(23.7), (23.6) and (23.5), 

(23.8) Hu1 = (CAC + C)u0 = C2Au0 + 3Cu0 = 3u1. 

Thus, u1 is an eigenfunction with eigenvalue 3. 
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Lemma 18. For j ∈ N0 = {0, 1, 2, . . . } the function uj = Cj u0 satisfies Huj = 
(2j + 1)uj . 

Proof. This follows by induction on j, where we know the result for j = 0 and 
j = 1. Then 

(23.9) HCuj = (CA + 1)Cuj = C(H − 1)uj + 3Cuj = (2j + 3)uj . 

/2Again by induction we can check that uj = (2j xj + qj (x))e−x 2 where qj is a 
polynomial of degree at most j − 2. Indeed this is true for j = 0 and j = 1 (where 
q0 = q1 ≡ 0) and then 

(23.10) Cuj = (2j+1 xj+1 + Cqj )e−x 2 /2 . 

and qj+1 = Cqj is a polynomial of degree at most j − 1 – one degree higher than 
qj . 

From this it follows in fact that the finite span of the uj consists of all the 
products p(x)e−x 2/2 where p(x) is any polynomial. 

Now, all these functions are in L2(R) and we want to compute their norms. 
First, a standard integral computation3 shows that 

2 2
(23.11) (e−x /2)2 = e−x = 

√
π 

R R 

For j > 0, integration by parts (easily justified by taking the integral over [−R,R] 
and then letting R →∞) gives 

(23.12) (Cj u0)2 = Cj u0(x)Cj u0(x)dx = u0A
j Cj u0. 

R R R 

Now, from (23.7), we can move one factor of A through the j factors of C until it 
emerges and ‘kills’ u0 

(23.13) ACj u0 = 2Cj−1 u+CAC
j−1 u0 = 2Cj−1 u0 + C2ACj−2 u0 = 2jCj−1 u0. 

So in fact, 

(23.14) (Cj u0)2 = 2j (Cj−1 u0)2 = 2j j!
√
π. 

R R 

A similar argument shows that 

(23.15) ukuj = u0A
kCj u0 = 0 if k =� j. 

R R 

Thus the functions 

(23.16) ej = 2−j/2(j!)− 2
1 
π− 4

1 
Cj e−x 2/2 

form an orthonormal sequence in L2(R). 

3To compute the Gaussian integral, square it and write as a double integral then introduct 
polar coordinates Z Z Z Z 2π 

( e−x 2 
dx)2 = e−x 2−y 2 

dxdy = 
∞ 

e−r 2 
rdrdθ = π ̂

 
− e−r 2 ̃ ∞ 

= π. 
R R2 0 0 

0 
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We would like to show this is orthonormal sequence is complete. Rather than 
argue through approximation, we can guess that in some sense the operator 

(23.17) AC = ( 
d 

+ x)(− 
d 

+ x) = − 
d2 

+ x 2 + 1 
dx dx dx2 

should be invertible, so one approach ist to try to construct its ‘inverse’ and show 
this really is a compact, self-adjoint operator on L2(R) and that its only eigenfunc
tions are the ei in (23.16). Rather than do this I will proceed more indirectly. 
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Solutions to Problem set 10 

Problem P10.1 Let H be a separable, infinite dimensional Hilbert space. Show 
that the direct sum of two copies of H is a Hilbert space with the norm 

(23.18)	 2 2 ) 2
1 

H ⊕ H � (u1, u2) �−→ (�u1�H + �u2�H 

either by constructing an isometric isomorphism 

(23.19) T : H −→ H ⊕ H, 1-1 and onto, �u�H = �Tu�H⊕H 

or otherwise. In any case, construct a map as in (23.19). 
Solution: Let {ei}i∈N be an orthonormal basis of H, which exists by virtue of 

the fact that it is an infinite-dimensional but separable Hilbert space. Define the 
map 

∞ ∞

(23.20) T : H � u −→ ( (u, e2i−1)ei, (u, e2i)ei) ∈ H ⊕ H 
i=1 i=1 

The convergence of the Fourier Bessel series shows that this map is well-defined 
and linear. Injectivity similarly follows from the fact that Tu = 0 in the image 
implies that (u, ei) = 0 for all i and hence u = 0. Surjectivity is also clear from the 
fact that 

∞

(23.21)	 S : H ⊕ H � (u1, u2) �−→ ((u1, ei)e2i−1 + (u2, ei)e2i) ∈ H 
i=1 

is a 2-sided inverse and Bessel’s identity implies isometry since �S(u1, u2)�2 = 
�u1�2 + �u2�2 

Problem P10.2 One can repeat the preceding construction any finite number 
of times. Show that it can be done ‘countably often’ in the sense that if H is a 
separable, infinite dimensional, Hilbert space then 

(23.22) l2(H) = {u : N −→ H; �u�l
2 
2(H) = �ui�H 

2 < ∞}
i 

has a Hilbert space structure and construct an explicit isometric isomorphism from 
l2(H) to H. 

Solution: A similar argument as in the previous problem works. Take an orthor
mal basis ei for H. Then the elements Ei,j ∈ l2(H), which for each i, i consist of 
the sequences with 0 entries except the jth, which is ei, given an orthonromal basis 
for l2(H). Orthormality is clear, since with the inner product is 

(23.23)	 (u, v)l2(H) = (uj , vj )H . 
j 

Completeness follows from completeness of the orthonormal basis of H since if 
v = {vj } (v,Ej,i) = 0 for all j implies vj = 0 in H. Now, to construct an isometric 
isomorphism just choose an isomorphism m : N2 −→ N then 

(23.24)	 Tu = v, vj = (u, em(i,j))ei ∈ H. 
i 

I would expect you to go through the argument to check injectivity, surjectivity 
and that the map is isometric. 
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Problem P10.3 Recall, or perhaps learn about, the winding number of a closed 
curve with values in C∗ = C \ {0}. We take as given the following fact:4 If Q = 
[0, 1]N and f : Q −→ C∗ is continuous then for each choice of b ∈ C satisfying 
exp(2πib) = f(0), there exists a unique continuous function F : Q −→ C satisfying 

(23.25) exp(2πiF (q)) = f(q), ∀ q ∈ Q and F (0) = b. 

Of course, you are free to change b to b + n for any n ∈ Z but then F changes to 
F + n, just shifting by the same integer. 

(1) Now, suppose c : [0, 1] −→ C∗ is a closed curve – meaning it is continuous 
and c(1) = c(0). Let C : [0, 1] −→ C be a choice of F for N = 1 and 
f = c. Show that the winding number of the closed curve c may be defined 
unambiguously as 

(23.26) wn(c) = C(1) − C(0) ∈ Z. 
Solution: Let C �, be another choice of F in this case. Now, g(t) = 

C �(t) − C(t) is continuous and satisfies exp(2πg(t)) = 1 for all t ∈ [0, 1] so 
by the uniqueness must be constant, thus C �(1) − C �(0) = C(1) − C(0) and 
the winding number is well-defined. 

(2) Show that wn(c) is constant under homotopy. That is if ci : [0, 1] −→ C∗, 
i = 1, 2, are two closed curves so ci(1) = ci(0), i = 1, 2, which are homotopic 
through closed curves in the sense that there exists f : [0, 1]2 −→ C∗ 

continuous and such that f(0, x) = c1(x), f(1, x) = c2(x) for all x ∈ [0, 1] 
and f(y, 0) = f(y, 1) for all y ∈ [0, 1], then wn(c1) = wn(c2). 

Solution: Choose F using the ‘fact’ corresponding to this homotopy f. 
Since f is periodic in the second variable – the two curves f(y, 0), and f(y, 1) 
are the same – so by the uniquess F (y, 0) − F (y, 1) must be constant, hence 
wn(c2) = F (1, 1) − F (1, 0) = F (0, 1) − F (0, 0) = wn(c1). 

(3) Consider the closed curve Ln : [0, 1] � x �−→ e2πix Idn×n of n × n matrices. 
Using the standard properties of the determinant, show that this curve is 
not homotopic to the identity through closed curves in the sense that there 
does not exist a continuous map G : [0, 1]2 −→ GL(n), with values in the 
invertible n × n matrices, such that G(0, x) = Ln(x), G(1, x) ≡ Idn×n for 
all x ∈ [0, 1], G(y, 0) = G(y, 1) for all y ∈ [0, 1]. 

Solution: The determinant is a continuous (actually it is analytic) map 
which vanishes precisely on non-invertible matrices. Moreover, it is given 
by the product of the eigenvalues so 

(23.27) det(Ln) = exp(2πixn). 

This is a periodic curve with winding number n since it has the ‘lift’ xn. 
Now, if there were to exist such an homotopy of periodic curves of matrices, 
always invertible, then by the previous result the winding number of the 
determinant would have to remain constant. Since the winding number for 
the constant curve with value the identity is 0 such an homotopy cannot 
exist. 

Problem P10.4 Consider the closed curve corresponding toLn above in the case 
of a separable but now infinite dimensional Hilbert space: 

(23.28) L : [0, 1] � x �−→ e 2πix IdH ∈ GL(H) ⊂ B(H) 

4Of course, you are free to give a proof – it is not hard. 
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taking values in the invertible operators on H. Show that after identifying H with 
H ⊕ H as above, there is a continuous map 

(23.29) M : [0, 1]2 −→ GL(H ⊕ H) 

with values in the invertible operators and satisfying 
(23.30)

M(0, x) = L(x), M(1, x)(u1, u2) = (e 4πix u1, u2), M(y, 0) = M(y, 1), ∀ x, y ∈ [0, 1].


Hint: So, think of H ⊕ H as being 2-vectors (u1, u2) with entries in H. This allows 
one to think of ‘rotation’ between the two factors. Indeed, show that 

(23.31) U (y)(u1, u2) = (cos(πy/2)u1 + sin(πy/2)u2, − sin(πy/2)u1 + cos(πy/2)u2) 

defines a continuous map [0, 1] � y �−→ U(y) ∈ GL(H ⊕ H) such that U(0) = Id, 
U(1)(u1, u2) = (u2, −u1). Now, consider the 2-parameter family of maps 

(23.32) U−1(y)V2(x)U(y)V1(x) 

where V1(x) and V2(x) are defined on H ⊕ H as multiplication by exp(2πix) on the 
first and the second component respectively, leaving the other fixed. 

Solution: Certainly U(y) is invertible since its inverse is U(−y) as follows in 
the two dimensional case. Thus the map W (x, y) on [0, 1]2 in (23.32) consists 
of invertible and bounded operators on H ⊕ H, meaning a continuous map W : 
[0, 1]2 −→ GL(H ⊕ H). When x = 0 or x = 1, both V1(x) and v2(x) reduce to the 
identiy, and hence W (0, y) = W (1, y) for all y, so W is periodic in x. Moreove at 
y = 0 W (x, 0) = V2(x)V1(x) is exactly L(x), a multiple of the identity. On the 
other hand, at x = 1 we can track composite as 

2πix 4πxu1 e u1 u2 u2 e u1(23.33) 
u2 

�−→ 
u2 

�−→ −e2πxu1 
�−→ −e4πxu1 

�−→ 
u2 

. 

This is what is required of M in (23.30). 
Problem P10.5 Using a rotation similar to the one in the preceeding problem (or 

otherwise) show that there is a continuous map 

(23.34) G : [0, 1]2 −→ GL(H ⊕ H) 

such that 

(23.35) G(0, x)(u1, u2) = (e 2πix u1, e
−2πix u2), 

G(1, x)(u1, u2) = (u1, u2), G(y, 0) = G(y, 1) ∀ x, y ∈ [0, 1]. 

Solution: We can take 

Id 0 e2πix 0
(23.36) G(y, x) = U(−y) 0 e−2πix U(y) 0 Id 

. 

By the same reasoning as above, this is an homotopy of closed curves of invertible 
operators on H ⊕ H which satisfies (23.35). 

Problem P10.6 Now, think about combining the various constructions above in 
the following way. Show that on l2(H) there is an homotopy like (23.34), G̃ : 
[0, 1]2 −→ GL(l2(H)), (very like in fact) such that 

(23.37) G̃(0, x) {uk}∞ = 
� 
exp((−1)k2πix)uk 

�∞ 
,k=1 k=1 

G̃(1, x) = Id, G̃(y, 0) = G̃(y, 1) ∀ x, y ∈ [0, 1]. 
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Solution: We can divide l2(H) into its odd an even parts 

(23.38) D : l2(H) � v �−→ ({v2i−1}, {v2i}) ∈ l2(H) ⊕ l2(H) ←→ H ⊕ H. 

and then each copy of l2(H) on the right with H (using the same isometric isomor
phism). Then the homotopy in the previous problem is such that 

(23.39) G̃(x, y) = D−1G(y, x)D 

accomplishes what we want. 
Problem P10.7: Eilenberg’s swindle For an infinite dimenisonal separable Hilbert 

space, construct an homotopy – meaning a continuous map G : [0, 1]2 −→ GL(H) 
– with G(0, x) = L(x) in (23.28) and G(1, x) = Id and of course G(y, 0) = G(y, 1) 
for all x, y ∈ [0, 1]. 

Hint: Just put things together – of course you can rescale the interval at the end 
to make it all happen over [0, 1]. First ‘divide H into 2 copies of itself’ and deform 
from L to M(1, x) in (23.30). Now, ‘divide the second H up into l2(H)’ and apply 
an argument just like the preceding problem to turn the identity on this factor into 
alternating terms multiplying by exp(±4πix) – starting with −. Now, you are on 
H ⊕ l2(H), ‘renumbering’ allows you to regard this as l2(H) again and when you 
do so your curve has become alternate multiplication by exp(±4πix) (with + first). 
Finally then, apply the preceding problem again, to deform to the identity (always 
of course through closed curves). Presto, Eilenberg’s swindle! 

Solution: By rescaling the variables above, we now have three homotopies, always 
through periodic families. On H ⊕ H between L(x) = e2πix Id and the matrix 

e4πix Id 0
(23.40) .0 Id 

Then on H ⊕ l2(H) we can deform from 

e4πix Id 0 e4πix Id 0
(23.41) 0 Id 

to 
0 G̃(0, x) 

with G̃(0, x) in (23.37). However we can then identify 

(23.42) H ⊕ l2(H) = l2(H), (u, v) �−→ w = {wj }, w1 = u, wj+1 = vj , j ≥ 1. 

This turns the matrix of operators in (23.41) into G̃(0, x)−1 . Now, we can apply 
the same construction to deform this curve to the identity. Notice that this really 
does ultimately give an homotopy, which we can renormalize to be on [0, 1] if you 
insist, of curves of operators on H – at each stage we transfer the homotopy back 
to H. 




