18.102 Introduction to Functional Analysis Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 20. Thursday, April 23: Spectral theorem for compact self-adjoint operators

Let $A \in \mathcal{K}(\mathcal{H})$ be a compact operator on a separable Hilbert space. We know of course, even without assuming that A is compact, that

(20.1)
$$\operatorname{Nul}(A) \subset \mathcal{H}$$

is a closed subspace, so $\operatorname{Nul}(A)^{\perp}$ is a Hilbert space – although it could be finitedimensional (or even 0-dimensional in the uninteresting case that A = 0).

Theorem 15. If $A \in \mathcal{K}(\mathcal{H})$ is a self-adjoint, compact operator on a separable Hilbert space, so $A^* = A$, then $\operatorname{null}(A)^{\perp}$ has an orthonormal basis consisting of eigenfunctions of A, u_i such that

$$Au_j = \lambda_j u_j, \ \lambda_j \in \mathbb{R} \setminus \{0\}$$

arranged so that $|\lambda_j|$ is a non-increasing sequence satisfying $\lambda_j \to 0$ as $j \to \infty$ (in case $\operatorname{Nul}(A)^{\perp}$ is finite dimensional, this sequence is finite).

Before going to the proof, let's notice some useful conclusions. One is called 'Fredholm's alternative'.

Corollary 4. If $A \in \mathcal{K}(\mathcal{H})$ is a compact self-adjoint operator on a separable Hilbert space then the equation

$$(20.3) u - Au = f$$

either has a unique solution for each $f \in \mathcal{H}$ or else there is a non-trivial finite dimensional space of solutions to

$$(20.4) u - Au = 0$$

and then (20.3) has a solution if and only if f is orthogonal to all these solutions.

Proof. This is just saying that the null space of $\operatorname{Id} - A$ is a complement to the range – which is closed. So, either $\operatorname{Id} - A$ is invertible or if not then the range is precisely the orthocomplement of $\operatorname{Nul}(\operatorname{Id} - A)$. You might say there is not much alternative from this point of view, since it just says the range is *always* the orthocomplement of the null space.

Let me separate off the heart of the argument from the bookkeeping.

Lemma 14. If $A \in \mathcal{K}(\mathcal{H})$ is a self-adjoint compact operator on a separable (possibly finite-dimensional) Hilbert space then

(20.5)
$$F(u) = (Au, u), \ F: \{u \in \mathcal{H}; \|u\| = 1\} \longrightarrow \mathbb{R}$$

is a continuous function on the unit sphere which attains its supremum and infimum. Furthermore, if the maximum or minimum is non-zero it is attained at an eivenvector of A with this as eigenvalue.

Proof. So, this is just like function in finite dimensions, except that it is not. First observe that F is real-valued, which follows from the self-adjointness of A since

(20.6)
$$\overline{(Au, u)} = (u, Au) = (A^*u, u) = (Au, u).$$

Moreover, continuity of F follows from continuity of A and of the inner product so (20.7) $|F(u) - F(u')| \le |(Au, u) - (Au, u')| + |(Au, u') - (Au', u')| \le 2||A|| ||u - u'||$ since both u and u' have norm one.

If we were in finite dimensions this finishes the proof, since the sphere is then compact and a continuous function on a compact set attains its sup and inf. In the general case we need to use the compactness of A. Certainly F is bounded,

(20.8)
$$|F(u)| \le \sup_{\|u\|=1} |(Au, u)| \le \|A\|.$$

Thus, there is a sequence u_n^+ such that $F(u_n^+) \to \sup F$ and another u_n^- such that $F(u_n^-) \to \inf F$. The *weak* compactness of the unit sphere means that we can pass to a subsequence in each case, and so assume that $u_n^{\pm} \rightharpoonup u^{\pm}$ converges weakly. Then, by the compactness of A, $Au_n^{\pm} \to Au^{\pm}$ converges strongly, i.e. in norm. But then we can write

$$(20.9) |F(u_n^{\pm}) - F(u^{\pm})| \le |(A(u_n^{\pm} - u^{\pm}), u_n^{\pm})| + |(Au^{\pm}, u_n^{\pm} - u^{\pm})| = |(A(u_n^{\pm} - u^{\pm}), u_n^{\pm})| + |(u^{\pm}, A(u_n^{\pm} - u^{\pm}))| \le 2||Au_n^{\pm} - Au^{\pm}||$$

to deduce that $F(u^{\pm}) = \lim F(u^{\pm}_n)$ are respectively the sup and inf of F. Thus indeed, as in the finite dimensional case, the sup and inf are attained, as in max and min.

So, suppose that $\Lambda^+ = \sup F > 0$. Then for any $v \in \mathcal{H}$ with $v \perp u^+$ the curve

(20.10)
$$L_v: (-\pi, \pi) \ni \theta \longmapsto \cos \theta u^+ + \sin \theta v$$

lies in the unit sphere. Computing out

(20.11)
$$F(L_v(\theta)) =$$

$$(AL_v(\theta), L_v(\theta)) = \cos^2 \theta F(u^+) + 2\sin(2\theta)\operatorname{Re}(Au^+, v) + \sin^2(\theta)F(v)$$

we know that this function must take its maximum at $\theta = 0$. The derivative there (it is certainly continuously differentiable on $(-\pi, \pi)$) is $\operatorname{Re}(Au^+, v)$ which must therefore vanish. The same is true for iv in place of v so in fact

$$(20.12) (Au^+, v) = 0 \ \forall \ v \perp u^+, \ \|v\| = 1$$

Taking the span of these v's it follows that $(Au^+, v) = 0$ for all $v \perp u^+$ so A^+u must be a multiple of u^+ itself. Inserting this into the definition of F it follows that $Au^+ = \Lambda^+ u^+$ is an eigenvector with eigenvalue $\Lambda^+ = \sup F$.

The same argument applies to $\inf F$ if it is negative, for instance by replacing A by -A. This completes the proof of the Lemma.

Proof of Theorem 15. First consider the Hilbert space $\mathcal{H}_0 = \operatorname{Nul}(A)^{\perp} \subset \mathcal{H}$. Then A maps \mathcal{H}_0 into itself, since

$$(20.13) (Au, v) = (u, Av) = 0 \ \forall \ u \in \mathcal{H}_0, \ v \in \operatorname{Nul}(A) \Longrightarrow Au \in \mathcal{H}_0.$$

Moreover, A_0 , which is A restricted to \mathcal{H}_0 , is again a compact self-adjoint operator – where the compactness follows from the fact that A(B(0,1)) for $B(0,1) \subset \mathcal{H}_0$ is smaller than (actually of course equal to) the whole image of the unit ball.

Thus we can apply the Lemma above to A_0 , with quadratic form F_0 , and find an eigenvector. Let's agree to take the one associated to $\sup F_{A_0}$ unless $\sup_{A_0} < -\inf F_0$ in which case we take one associated to the inf. Now, what can go wrong here? Nothing except if $F_0 \equiv 0$. However,

Lemma 15. In general for a self-adjoint operator on a Hilbert space

$$(20.14) F \equiv 0 \iff A \equiv 0.$$

Proof. In principle F is only defined on the unit ball, but of course we can recover (Au, u) for all $u \in \mathcal{H}$ from it. Namely, if u = 0 it vanishes of course and otherwise

(20.15)
$$(Au, u) = ||u||^2 F(\frac{u}{||u||}).$$

Then xs we can recover A by 'polarization'. Since

(20.16)
$$2(Au, v) = (A(u+v), u+v) + i(A(u+iv, u+iv)).$$

Thus if $F \equiv 0$ then $A \equiv 0$.

So, we know that we can find an eigenvector unless $A \equiv 0$ which would imply $\operatorname{Nul}(A) = \mathcal{H}$. Now we proceed by induction. Suppose we have found N mutually orthogonal eigenvectors e_j for A all with norm 1 and eigenvectors λ_j – an orthonormal set of eigenvectors and all in \mathcal{H}_0 . Then we consider

(20.17)
$$\mathcal{H}_N = \{ u \in \mathcal{H}_0 = \operatorname{Nul}(A)^{\perp}; (u, e_j) = 0, \ j = 1, \dots, N \}.$$

From the argument above, A maps \mathcal{H}_N into itself, since

(20.18)
$$(Au, e_j) = (u, Ae_j) = \lambda_j(u, e_j) = 0 \text{ if } u \in \mathcal{H}_N \Longrightarrow Au \in \mathcal{H}_N.$$

Moreover this restricted operator is self-adjoint and compact on \mathcal{H}_N as before so we can again find an eigenvector, with eigenvalue either the max of min of the new F for \mathcal{H}_N . The only problem arises if $F \equiv 0$ at some stage, but then $A \equiv 0$ on \mathcal{H}_N and since $\mathcal{H}_N \perp \operatorname{Nul}(A)$ this implies $\mathcal{H}_N = \{0\}$ so \mathcal{H}_0 must have been finite dimensional.

Thus, either \mathcal{H}_0 is finite dimensional or we can grind out an infinite orthonormal sequence e_i of eigenvectors of A in \mathcal{H}_0 with the corresponding sequence of eigenvalues such that $|\lambda_i|$ is non-increasing – since the successive F_N 's are restrictions of the previous ones the max and min are getting closer to (or at least no further from) 0. In fact it follows that $\lambda_j \to 0$ in this case, since otherwise there must be one eigenvalue $\lambda \neq 0$ for which the space of eigenvectors is infinite dimensional – ruled out by the fact that $\lambda(\mathrm{Id} - \lambda^{-1}A)$ has finite dimensional null space as shown last time.

Finally then, why must this orthonormal sequence be an orthonormal basis of \mathcal{H}_0 ? If not, then we can form the closure of the span of the e_i we have constructed, \mathcal{H}' , and its orthocomplement in \mathcal{H}_0 – which would have to be non-trivial. However, as before F restricts to this space to be F' for the restriction of A' to it, which is again a compact self-adjoint operator. So, if F' is not identically zero we can again construct an eigenfunction, with non-zero eigenvalue, which contracdicts the fact the we are always choosing a largest eigenvalue, in absolute value at least. Thus in fact $F' \equiv 0$ so $A' \equiv 0$ and the eigenvectors form and orthonormal basis of $\operatorname{Nul}(A)^{\perp}$. This completes the proof of the theorem.

118