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Lecture 18. Tuesday April 14: Compact operators 

Last time we considered invertible elemenets of B(H), the algebra of bounded 
operators on a separable Hilbert space, and also the finite rank operators. The 
latter form an ideal which is closed under taking adjoints. We also showed the the 
closure of this ideal, the elements in B(H) which are the limits of (norm-convergent) 
sequences of finite rank operators, also form an ideal which is closed under taking 
adjoints and also norm, i.e. metrically, closed. 

Definition 8. An element K ∈ B(H), the bounded operators on a separable Hilbert 
space, is said to be compact (the old terminology was ‘totally bounded’ and you 
might still see this) if the image of the unit ball is precompact, i.e. has compact 
closure – that is if the closure of K{u ∈ H; �u�H ≤ 1} is compact in H. 

Lemma 12. An operator K ∈ B(H) is compact if and only if the image {Kun} of 
any weakly convergent sequence {un} in H is strongly, ie. norm, convergent. 

Proof. First suppose that un � u is a weakly convergent sequence in H and that K 
is compact. We know that �un� < C is bounded so the sequence Kun is contained 
in CK(B(0, 1)) and hence in a compact set (clearly if D is compact then so is cD 
for any constant c.) Thus, any subsequence of Kun has a convergent subseqeunce 
and the limit is necessarily Ku since Kun � Ku (true for any bounded operator 
by computing 

(18.1) (Kun, v) = (un,K
∗v) (u,K∗v) = (Ku, v).)→ 

But the condition on a sequence in a metric space that every subsequence of it has 
a subsequence which converges to a fixed limit implies convergence. (If you don’t 
remember this, reconstruct the proof: To say a sequence vn does not converge to 
v is to say that for some � > 0 there is a subsequence along which d(vnk , v) ≥ �. 
This is impossible given the subsequence of subsequence condition (coverging to 
the fixed limit v.) 

Conversely, suppose that K has this property of turning weakly convergent into 
strongly convergent sequences. We want to show that K(B(0, 1)) has compact 
closure. This just means that any sequence in K(B(0, 1)) has a (strongly) con
vergent subsequence – where we do not have to worry about whether the limit is 
in the set or not. Such a sequence is of the form Kun where un is a sequence in 
B(0, 1). However we know that the ball is weakly compact, that is we can pass to 
a subsequence which converges weakly, unj � u. Then, by the assumption of the 
Lemma, Kunj Ku converges strongly. Thus un does indeed have a convergent →
subsequence and hence K(B(0, 1)) must have compact closure. � 

Proposition 25. An operator K ∈ B(H), bounded on a separable Hilbert space, is 
compact if and only if it is the limit of a norm-convergent sequence of finite rank 
operators, i.e. the ideal of compact operators K(H) is the norm closure of the ideal 
of finite rank operators. 

Proof. So, we need to show that a compact operators is the limit of a convergent 
sequence of finite rank operators. To do this we use one of the characterizations of 
compact subsets of a separable Hilbert space discussed earlier. Namely, if ei is an 
orthonormal basis of H then a subset I ⊂ H is compact if and only if it is closed 
and bounded and has equi-small tails with respec to {ei}, meaning given � > 0 
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there exits N such that 

(18.2) |(v, ei)|2 < �2 ∀ v ∈ I. 
i>N 

Now we shall apply this to the set K(B(0, 1)) where we assume that K is compact 
– so this set is contained in a compact set. Hence (18.2) applies to it. Namely this 
means that for any � > 0 there exists n such that 

(18.3) |(Ku, ei)|2 < �2 ∀ u ∈ H, �u�H ≤ 1. 
i>n 

For each n consider the first part of these sequences and define 

(18.4) Knu = (Ku, ei)ei. 
k≤n 

This is clearly a linear operator and has finite rank – since its range is contained in 
the span of the first n elements of {ei}. Since this is an orthonormal basis, 

(18.5) �Ku − Knu�2 = (Ku, ei) 2 
H | |

i>n 

Thus (18.3) shows that �Ku − Knu�H ≤ �. Now, increasing n makes �Ku − Knu�
smaller, so given � > 0 there exits n such that for all N ≥ n, 

(18.6) �K − KN �B = sup �Ku − Knu�H ≤ �. 
�u�≤1 

Thus indeed, Kn K in norm and we have shown that the compact operators are →
contained in the norm closure of the finite rank operators. 

For the converse we assume that Tn → K is a norm convergent sequence in B(H) 
where each of the Tn is of finite rank – of course we know nothing about the rank 
except that it is finite. We want to conclude that K is compact, so we need to 
show that K(B(0, 1)) is precompact. It is certainly bounded, by the norm of K. 
By one of the results on compactness of sets in a separable Hilbert space we know 
that it suffices to prove that every weakly convergent sequence in K(B(0, 1)) has a 
strongly convergent subsequence – meaning norm convergent. The limit need not 
be in K(B(0, 1)) but must exist of the set is to have compact closure. So, suppose 
vk is a weakly convergent sequence in K(B(0, 1)). Well then, it is of the form Kuk 

where uk is a sequence in the unit ball. Of necessity this has a weakly convergent 
subsequence, so we can assume that uk � u is weakly convergent, by passing to a 
subsequence of the original sequence. Now, each Tn is of finite rank so the sequences 
Tnvk are each strongly convergent as k →∞ – namely they are weakly convergent 
because (Tnvk, w) = (vk, T n 

∗w), and in a finite dimensional space. Use the triangle 
inequality and definition of the norm of an operator to see that 

(18.7) �Kvk − Kvl� ≤ �Kvk − Tnvk� + �Tnvk − Tnvl� + �Tnvl − Kvl� 
≤ 2�K − Tn�B + �Tnvk − Tnvl�. 

Now, given � > 0 first choose n so large that �K − Tn� < �/3. Then, having 
fixed n, use the fact that Tnvk is Cauchy to choose p such that k, l > p implies 
�Tnvk − Tnvl� < �/3. It follows that Kvk is Cauchy and hence convergent by the 
completeness of Hilbert space. Thus K is compact. � 
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Notice that this shows that the ideal of compact operators is itself closed – you 
can see this from the last argument but of course it follows from the fact that it is 
the closure of the finite rank operators. 
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Solutions to Problem set 8 

Problem 8.1 Show that a continuous function K : [0, 1] −→ L2(0, 2π) has the 
property that the Fourier series of K(x) ∈ L2(0, 2π), for x ∈ [0, 1], converges 
uniformly in the sense that if Kn(x) is the sum of the Fourier series over k
then Kn : [0, 1] −→ L2(0, 2π) is also continuous and 

| | ≤ n 

(18.8) sup �K(x) − Kn(x)�L2(0,2π) → 0. 
x∈[0,1] 

Hint. Use one of the properties of compactness in a Hilbert space that you proved 
earlier. 

Problem 8.2 
Consider an integral operator acting on L2(0, 1) with a kernel which is continuous 

– K ∈ C([0, 1]2). Thus, the operator is 

(18.9) Tu(x) = K(x, y)u(y). 
(0,1) 

Show that T is bounded on L2 (I think we did this before) and that it is in the 
norm closure of the finite rank operators. 

Hint. Use the previous problem! Show that a continuous function such as K in 
this Problem defines a continuous map [0, 1] � x �−→ K(x, ) ∈ C([0, 1]) and hence ·
a continuous function K : [0, 1] −→ L2(0, 1) then apply the previous problem with 
the interval rescaled. 

Here is an even more expanded version of the hint: You can think of K(x, y) as 
a continuous function of x with values in L2(0, 1). Let Kn(x, y) be the continuous 
function of x and y given by the previous problem, by truncating the Fourier series 
(in y) at some point n. Check that this defines a finite rank operator on L2(0, 1) 
– yes it maps into continuous functions but that is fine, they are Lebesgue square 
integrable. Now, the idea is the difference K − Kn defines a bounded operator with 
small norm as n becomes large. It might actually be clearer to do this the other 
way round, exchanging the roles of x and y. 

Problem 8.3 Although we have concentrated on the Lebesgue integral in one 
variable, you proved at some point the covering lemma in dimension 2 and that is 
pretty much all that was needed to extend the discussion to 2 dimensions. Let’s just 
assume you have assiduously checked everything and so you know that L2((0, 2π)2) 
is a Hilbert space. Sketch a proof – noting anything that you are not sure of – that 
the functions exp(ikx + ily)/2π, k, l ∈ Z, form a complete orthonormal basis. 




