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100 LECTURE NOTES FOR 18.102, SPRING 2009 

Lecture 17. Thursday April 9 was the second test 

(1) Problem 1 Let H be a separable (partly because that is mostly what I have 
been talking about) Hilbert space with inner product ( ) and norm � · �.·, ·
Say that a sequence un in H converges weakly if (un, v) is Cauchy in C for 
each v ∈ H. 
(a) Explain why the sequence �un�H is bounded. 

Solution: Each un defines a continuous linear functional on H by 

(17.1) Tn(v) = (v, un),	 �Tn� = �un�, Tn : H −→ C. 

For fixed v the sequence Tn(v) is Cauchy, and hence bounded, in C so 
by the ‘Uniform Boundedness Principle’ the �Tn� are bounded, hence 
�un� is bounded in R. 

(b) Show that there exists an element u ∈ H such that (un, v) → (u, v) 
for each v ∈ H. 
Solution: Since (v, un) is Cauchy in C for each fixed v ∈ H it is 
convergent. Set 

(17.2)	 Tv = lim (v, un) in C. 
n→∞ 

This is a linear map, since 

(17.3) T (c1v1 + c2v2) = lim c1(v1, un) + c2(v2, u) = c1Tv1 + c2Tv2 
n→∞ 

and is bounded since |Tv| ≤ C�v�, C = supn �un�. Thus, by Riesz’ 
theorem there exists u ∈ H such that Tv = (v, u). Then, by definition 
of T, 

(17.4)	 (un, v) → (u, v) ∀ v ∈ H. 

(c) If ei, i ∈ N, is an orthonormal sequence, give, with justification, an 
example of a sequence un which is not weakly convergent in H but is 
such that (un, ej ) converges for each j. 
Solution: One such example is un = nen. Certainly (un, ei) = 0 for 
all i > n, so converges to 0. However, �un� is not bounded, so the 
sequence cannot be weakly convergent by the first part above. 

(d) Show that if the ei form an orthonormal basis, �un� is bounded and 
(un, ej ) converges for each j then un converges weakly. 
Solution: By the assumption that (un, ej ) converges for all j it fol
lows that (un, v) converges as n → ∞ for all v which is a finite lin
ear combination of the ei. For general v ∈ H the convergence of the 
Fourier-Bessell series for v with respect to the orthonormal basis ej 

(17.5)	 v = (v, ek)ek 

k 

shows that there is a sequence vk	 v where each vk is in the finite →
span of the ej . Now, by Cauchy’s inequality 

(17.6) |(un, v) − (um, v)| ≤ |(unvk) − (um, vk)| + |(un, v − vk)| + |(um, v − vk)|. 

Given � > 0 the boundedness of �un� means that the last two terms 
can be arranged to be each less than �/4 by choosing k sufficiently 
large. Having chosen k the first term is less than �/4 if n,m > N by 
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the fact that (un, vk) converges as n →∞. Thus the sequence (un, v) 
is Cauchy in C and hence convergent. 

(2) Problem 2 Suppose that f ∈ L1(0, 2π) is such that the constants 

ck = f(x)e−ikx , k ∈ Z, 
(0,2π) 

satisfy 
2|ck| < ∞. 

k∈Z 

Show that f ∈ L2(0, 2π). 
Solution. So, this was a good bit harder than I meant it to be – but still 

in principle solvable (even though no one quite got to the end). 
First, (for half marks in fact!) we know that the ck exists, since f ∈ 

L1(0, 2π) and 
2 
e−ikx is continuous so fe−ikx ∈ L1(0, 2π) and then the con

dition |ck| < ∞ implies that the Fourier series does converge in L2(0, 2π) 
k 

so there is a function 

1 � 
ikx (17.7)	 g = cke .

2π 
k∈C 

Now, what we want to show is that f = g a.e. since then f ∈ L2(0, 2π). 
Set h = f − g ∈ L1(0, 2π) since L2(0, 2π) ⊂ L1(0, 2π). It follows from 

(17.7) that f and g have the same Fourier coefficients, and hence that 

(17.8)	 h(x)e ikx = 0 ∀ k ∈ Z. 
(0,2π) 

So, we need to show that this implies that h = 0 a.e. Now, we can recall 
from class that we showed (in the proof of the completeness of the Fourier 
basis of L2) that these exponentials are dense, in the supremum norm, in 
continuous functions which vanish near the ends of the interval. Thus, by 
continuity of the integral we know that 

(17.9)	 hg = 0 
(0,2π) 

for all such continuous functions g. We also showed at some point that 
we can find such a sequence of continuous functions gn to approximate 
the characteristic function of any interval χI . It is not true that gn χI 

1 
→

uniformly, but for any integrable function h, hgn → hχI in L . So, the 
upshot of this is that we know a bit more than (17.9), namely we know 
that 

(17.10)	 hg = 0 ∀ step functions g. 
(0,2π) 

So, now the trick is to show that (17.10) implies that h = 0 almost 
everywhere. Well, this would follow if we know that 

(0,2π) |h| = 0, so 

let’s aim for that. Here is the trick. Since g ∈ L1 we know that there 
is a sequence (the partial sums of an absolutely convergent series) of step 
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functions hn such that hn g both in L1(0, 2π) and almost everywhere →
and also |hn| → |h| in both these senses. Now, consider the functions 

0	 if hn(x) = 0 
(17.11)	 sn(x) = hn(x) otherwise. |hn(x)| 

Clearly sn is a sequence of step functions, bounded (in absolute value by 1 
in fact) and such that snhn = |hn|. Now, write out the wonderful identity 

(17.12) |h(x)| = |h(x)| − |hn(x)| + sn(x)(hn(x) − h(x)) + sn(x)h(x). 

Integrate this identity and then apply the triangle inequality to conclude 
that 

|h| = (|h(x)| − |hn(x)| + sn(x)(hn − h) 

(17.13) 
(0�,2π) (0,2π) � 

(0,2π) 

≤ 
(0,2π) 

(||h(x)| − |hn(x)|| + 
(0,2π) 

|hn − h| → 0 as n →∞. 

Here on the first line we have used (17.10) to see that the third term on 
the right in (17.12) integrates to zero. Then the fact that |sn| ≤ 1 and the 
convergence properties. 

Thus in fact h = 0 a.e. so indeed f = g and f ∈ L2(0, 2π). Piece of cake, 
right! Mia culpa. 

(3) Problem 3 Consider the two spaces of sequences 
∞

h±2 = {c : N �−→ C; j±4|cj |2 < ∞}. 
j=1 

Show that both h±2 are Hilbert spaces and that any linear functional sat
isfying 

T : h2 −→ C, |Tc| ≤ C�c�h2 

for some constant C is of the form 
∞

Tc = cidi 

j=1 

where d : N −→ C is an element of h−2. 
Solution: Many of you hammered this out by parallel with l2 . This is 

fine, but to prove that h±2 are Hilbert spaces we can actually use l2 itself. 
Thus, consider the maps on complex sequences 

(17.14)	 (T ±c)j = cj j
±2 . 

Without knowing anything about h±2 this is a bijection between the se
quences in h±2 and those in l2 which takes the norm 

(17.15)	 �c�h±2 = �Tc�l2 . 

It is also a linear map, so it follows that h are linear, and that they are ±
indeed Hilbert spaces with T ± isometric isomorphisms onto l2; The inner 
products on h±2 are then 

∞

(17.16)	 (c, d)h±2 = j±4 cj dj . 
j=1 
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Don’t feel bad if you wrote it all out, it is good for you! 
Now, once we know that h2 is a Hilbert space we can apply Riesz’ the

orem to see that any continuous linear functional T : h2 −→ C, |Tc| ≤
C�c�h2 is of the form 

∞

(17.17)	 Tc = (c, d�)h2 = j4 cj d�j , d
� ∈ h2. 

j=1 

Now, if d� ∈ h2 then dj = j4d�j defines a sequence in h−2. Namely, 

(17.18)	 j−4|dj |2 = j4|d�j |2 < ∞. 
j j 

Inserting this in (17.17) we find that 
∞

(17.19)	 Tc = cj dj , d ∈ h−2. 
j=1 




