18.102 Introduction to Functional Analysis Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 15. THURSDAY, APRIL 2

I recalled the basic properties of the Banach space, and algebra, of bounded operators $\mathcal{B}(\mathcal{H})$ on a separable Hilbert space \mathcal{H} . In particular that it is a Banach space with respect to the norm

(15.1)
$$||A|| = \sup_{\|u\|_{\mathcal{H}}=1} ||Au||_{\mathcal{H}}$$

and that the norm satisfies

(15.2)
$$||AB|| \le ||A|| ||b||$$

Restatated and went through the proof again of the

Theorem 13 (Open Mapping). If $A : B_1 \longrightarrow B_2$ is a bounded linear operator between Banach spaces and $A(B_1) = B_2$, i.e. A is surjective, then it is open:

(15.3)
$$A(O) \subset B_2 \text{ is open } \forall O \subset B_1 \text{ open.}$$

Proof in Lecture 13, also the two consequences of it: If $A : B_1 \longrightarrow B_2$ is bounded, 1-1 and onto (so it is a bijection) then its inverse is also bounded. Secondly the closed graph theorem. All this is in the notes for Lecture 13.

As a second example of the Uniform Boundedness Theorem I also talked about strong convergence of operators. Thus a sequence of bounded operators (on a separable Hilbert space) $A_n \in \mathcal{B}(\mathcal{H})$ is said to *converge strongly* if for each $u \in \mathcal{H}$ $A_n u$ converges. It follows that the limit is a bounded linear operator – or you can include this in the definition if you prefer. The Uniform Boundedness Theorem shows that if A_n is strongly convergent then it is bounded, $\sup_n ||A_n|| < \infty$. You will need this for the problems this week.

I also talked about the shift operator $S:l^2 \longrightarrow l^2$ defined by

(15.4)
$$S(\sum_{j=1}^{\infty} c_j e_j) = \sum_{j=1}^{\infty} c_j e_{j+1}$$

defined by moving each element of the sequence 'up one' and starting with zero. This is an example of a bounded linear operator, with ||S|| = 1 clearly enough, which is 1-1, since Au = 0 implies u = 0, but which is not surjective. Indeed the range of S is exactly the subspace

(15.5)
$$H_1 = \{ u \in L^2; (u, e_1) = 0 \}.$$

Using the open mapping theorem (or directly) it is easy to see that S is invertible as a bounded linear map from H to H_1 , but not on H. In fact as you should show in the problem set this week, it cannot be made invertible by a small perturbation. This shows in particular that the set of invertible elements of $\mathcal{B}(\mathcal{H})$ is not dense, which is quite different from the finite dimensional case.

Finally I started to talk about the set of invertible elements:

(15.6)
$$\operatorname{GL}(\mathcal{H}) = \{ A \in \mathcal{B}(\mathcal{H}); \exists B \in \mathcal{H}(\mathcal{H}), BA = AB = \operatorname{Id} \} \}$$

Note that this is equivalent to saying A is 1-1 and onto in view of the discussion above.

Lemma 10. If
$$A \in \mathcal{B}(\mathcal{H})$$
 and $||A|| < 1$ then

(15.7)
$$\operatorname{Id} -A \in \operatorname{GL}(\mathcal{H}).$$

Proof. Neumann series. If $\|A\| < 1$ then $\|A^j\| \leq \|A\|^j$ and it follows that the Neumann series

$$(15.8) B = \sum_{j} A^{j}$$

is absolutely summable in $\mathcal{B}(\mathcal{H})$ sicce $\sum_{j=0}^{1} ||A^{j}||$ converges. Thus the sum converges. Moreover by the continuity of the product with respect to the norm

(15.9)
$$AB = A \lim_{n \to \infty} \sum_{j=0}^{n} A^{j} = \lim_{n \to \infty} \sum_{j=1}^{n+1} A^{j} = B - \text{Id}$$

an similarly BA = B - Id. Thus (Id - A)B = B(Id - A) = Id shows that B is a (and hence the) 2-sided inverse of Id - A.

Proposition 22. The group of invertible elements $GL(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$ is open (but not dense if \mathcal{H} is infinite-dimensional).

Proof. I will do the proof next time.