MIT OpenCourseWare
http://ocw.mit.edu

18.102 Introduction to Functional Analysis

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 15. Thursday, April 2
I recalled the basic properties of the Banach space, and algebra, of bounded operators $\mathcal{B}(\mathcal{H})$ on a separable Hilbert space \mathcal{H}. In particular that it is a Banach space with respect to the norm

$$
\begin{equation*}
\|A\|=\sup _{\|u\|_{\mathcal{H}}=1}\|A u\|_{\mathcal{H}} \tag{15.1}
\end{equation*}
$$

and that the norm satisfies

$$
\begin{equation*}
\|A B\| \leq\|A\|\|b\| . \tag{15.2}
\end{equation*}
$$

Restatated and went through the proof again of the
Theorem 13 (Open Mapping). If $A: B_{1} \longrightarrow B_{2}$ is a bounded linear operator between Banach spaces and $A\left(B_{1}\right)=B_{2}$, i.e. A is surjective, then it is open:

$$
\begin{equation*}
A(O) \subset B_{2} \text { is open } \forall O \subset B_{1} \text { open. } \tag{15.3}
\end{equation*}
$$

Proof in Lecture 13, also the two consequences of it: If $A: B_{1} \longrightarrow B_{2}$ is bounded, $1-1$ and onto (so it is a bijection) then its inverse is also bounded. Secondly the closed graph theorem. All this is in the notes for Lecture 13.

As a second example of the Uniform Boundedness Theorem I also talked about strong convergence of operators. Thus a sequence of bounded operators (on a separable Hilbert space) $A_{n} \in \mathcal{B}(\mathcal{H})$ is said to converge strongly if for each $u \in \mathcal{H}$ $A_{n} u$ converges. It follows that the limit is a bounded linear operator - or you can include this in the definition if you prefer. The Uniform Boundedness Theorem shows that if A_{n} is strongly convergent then it is bounded, $\sup _{n}\left\|A_{n}\right\|<\infty$. You will need this for the problems this week.

I also talked about the shift operator $S: l^{2} \longrightarrow l^{2}$ defined by

$$
\begin{equation*}
S\left(\sum_{j=1}^{\infty} c_{j} e_{j}\right)=\sum_{j=1}^{\infty} c_{j} e_{j+1} \tag{15.4}
\end{equation*}
$$

defined by moving each element of the sequence 'up one' and starting with zero. This is an example of a bounded linear operator, with $\|S\|=1$ clearly enough, which is $1-1$, since $A u=0$ implies $u=0$, but which is not surjective. Indeed the range of S is exactly the subspace

$$
\begin{equation*}
H_{1}=\left\{u \in L^{2} ;\left(u, e_{1}\right)=0\right\} . \tag{15.5}
\end{equation*}
$$

Using the open mapping theorem (or directly) it is easy to see that S is invertible as a bounded linear map from H to H_{1}, but not on H. In fact as you should show in the problem set this week, it cannot be made invertible by a small perturbation. This shows in particular that the set of invertible elements of $\mathcal{B}(\mathcal{H})$ is not dense, which is quite different from the finite dimensional case.

Finally I started to talk about the set of invertible elements:

$$
\begin{equation*}
\mathrm{GL}(\mathcal{H})=\{A \in \mathcal{B}(\mathcal{H}) ; \exists B \in \mathcal{H}(\mathcal{H}), B A=A B=\mathrm{Id}\} \tag{15.6}
\end{equation*}
$$

Note that this is equivalent to saying A is 1-1 and onto in view of the discussion above.

Lemma 10. If $A \in \mathcal{B}(\mathcal{H})$ and $\|A\|<1$ then

$$
\begin{equation*}
\operatorname{Id}-A \in \operatorname{GL}(\mathcal{H}) \tag{15.7}
\end{equation*}
$$

Proof. Neumann series. If $\|A\|<1$ then $\left\|A^{j}\right\| \leq\|A\|^{j}$ and it follows that the Neumann series

$$
\begin{equation*}
B=\sum_{j} A^{j} \tag{15.8}
\end{equation*}
$$

is absolutely summable in $\mathcal{B}(\mathcal{H})$ sicne $\sum_{j=0}^{1}\left\|A^{j}\right\|$ converges. Thus the sum converges. Moreover by the continuity of the product with respect to the norm

$$
\begin{equation*}
A B=A \lim _{n \rightarrow \infty} \sum_{j=0}^{n} A^{j}=\lim _{n \rightarrow \infty} \sum_{j=1}^{n+1} A^{j}=B-\mathrm{Id} \tag{15.9}
\end{equation*}
$$

an similarly $B A=B-\mathrm{Id}$. Thus $(\operatorname{Id}-A) B=B(\operatorname{Id}-A)=\operatorname{Id}$ shows that B is a (and hence the) 2 -sided inverse of Id $-A$.

Proposition 22. The group of invertible elements $\mathrm{GL}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$ is open (but not dense if \mathcal{H} is infinite-dimensional).

Proof. I will do the proof next time.

