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Lecture 14. Tuesday, March 31: Fourier series and L2(0, 2π). 

Fourier series. Let us now try applying our knowledge of Hilbert space to a 
concrete Hilbert space such as L2(a, b) for a finite interval (a, b) ⊂ R. You showed 
that this is indeed a Hilbert space. One of the reasons for developing Hilbert space 
techniques originally was precisely the following result. 

Theorem 12. If u ∈ L2(0, 2π) then the Fourier series of u, 

(14.1)	
1 � 

cke 
ikx , ck = 

� 
u(x)e−ikxdx

2π 
k∈Z (0,2π) 

converges in L2(0, 2π) to u. 

Notice that this does not say the series converges pointwise, or pointwise almost 
everywhere since this need not be true – depending on u. We are just claiming that 

1 � 
(14.2)	 lim |u(x) − 

2π
cke 

ikx|2 = 0 
n→∞ 

|k|≤n 

for any u ∈ L2(0, 2π). 
First let’s see that our abstract Hilbert space theory has put us quite close to 

proving this. First observe that if e�k(x) = exp(ikx) then these elements of L2(0, 2π) 
satisfy � � 2π	

� 
0 if k = j

(14.3) e�ke
�
j = exp(i(k − j)x) = 

�
0	 2π if k = j. 

Thus the functions 
e�k 1 ikx (14.4)	 ek = = e 
�e�k�

√
2π 

form an orthonormal set in L2(0, 2π). It follows that (14.1) is just the Fourier-Bessel 
series for u with respect to this orthonormal set:

(14.5) ck = 
√

2π�u, ek� =
1 
cke 

ikx = �u, ek�ek.⇒ 
2π 

So, we alreay know that this series converges in L2(0, 2π) thanks to Bessel’s identity. 
So ‘all’ we need to show is 

Proposition 21. The ek, k ∈ Z, form an orthonormal basis of L2(0, 2π), i.e. are 
complete: 

(14.6)	 ue ikx = 0 ∀ k = ⇒ u = 0 in L2(0, 2π). 

This however, is not so trivial to prove. An equivalent statement is that the finite 
linear span of the ek is dense in L2(0, 2π). I will prove this using Fejér’s method. 
In this approach, we check that any continuous function on [0, 2π] satisfying the 
additional condition that u(0) = u(2π) is the uniform limit on [0, 2π] of a sequence in 
the finite span of the ek. Since uniform convergence of continuous functions certainly 
implies convergence in L2(0, 2π) and we already know that the continuous functions 
which vanish near 0 and 2π are dense in L2(0, 2π) (I will recall why later) this is 
enough to prove Proposition 21. However the proof is a serious piece of analysis, 
at least it is to me! 
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So, the problem is to find the sequence in the span of the ek. Of course the trick 
is to use the Fourier expansion that we want to check. The idea of Cesàro is to 
make this Fourier expansion ‘converge faster’, or maybe better. For the moment 
we can work with a general function u ∈ L2(0, 2π) – or think of it as continuous if 
you prefer. So the truncated Fourier series is 

1 � � 
u(t)e−iktdt)e ikx (14.7) Un(x) = (

2π (0,2π)|k|≤n 

where I have just inserted the definition of the ck’s into the sum. This is just a 
finite sum so we can treat x as a parameter and use the linearity of the integral to 
write this as 

(14.8) Un(x) = Dn(x − t)u(t), Dn(s) = 
2
1 
π 

� 
e iks . 

(0,2π) |k|≤n 

Now this sum can be written as an explicit quotient, since, by telescoping, 
1
2

1
2 )s(14.9) (2π)Dn(s)(eis/2 is/2) = e i(n+− e )s − e−i(n+ . 

So in fact, at least where s = 0, 
1
2

1
2i(n+ )s − e−i(n+

2π(eis/2 − e−is/2) 

)se
(14.10)	 Dn(s) = 

and of course the limit as s 0 exists just fine. →
As I said, Cesàro’s idea is to speed up the convergence by replacing Un by its 

average 
n1 � 

(14.11)	 Vn(x) = Ul. 
n + 1 

l=0 

Again plugging in the definitions of the Ul’s and using the linearity of the integral 
we see that �	 n1 � 
(14.12) Vn(x) = Sn(x − t)u(t), Sn(s) = 

n + 1 
Dl(s). 

(0,2π)	 l=0 

So again we want to compute a more useful form for Sn(s) – which is the Fejér 
kernel. Since the denominators in (14.10) are all the same, 

n n
1 
2

1 
2 )sis/2 − e−is/2)Sn

i(n+(s) = e )s e−i(n+(14.13) 2π(n + 1)(e − . 
l=0 l=0 

Using the same trick again, 
n

1 
2 )s i(n+1)s= e − 1is/2 − e−is/2) i(n+e(14.14) (e

l=0 

so 

(14.15)	 2π(n + 1)(eis/2 − e−is/2)2Sn(s) = e i(n+1)s + e−i(n+1)s − 2 =⇒ 

sin2( (n+1)1 2 s)
Sn(s) =	 . 

n + 1 2π sin2( 2 
s ) 
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Now, what can we say about this function? One thing we know immediately is 
that if we plug u = 1 into the disucssion above, we get Un = 1 for n ≥ 0 and hence 
Vn = 1 as well. Thus in fact 

(14.16)	 Sn(x − ·) = 1. 
(0,2π) 

Now looking directly at (14.15) the first thing to notice is that Sn(s) ≥ 0. Also, 
we can see that the denominator only vanishes when s = 0 or s = 2π in [0, 2π]. 
Thus if we stay away from there, say s ∈ (δ, 2π − δ) for some δ > 0 then – since sin 
is a bounded function 

(14.17) |Sn(s)| ≤ (n + 1)−1Cδ on (δ, 2π − δ). 

Now, we are interested in how close Vn(x) is to the given u(x) in supremum 
norm, where now we will take u to be continuous. Because of (14.16) we can write 

(14.18)	 u(x) = Sn(x − t)u(x) 
(0,2π) 

where t denotes the variable of integration (and x is fixed in [0, 2π]). This ‘trick’ 
means that the difference is 

(14.19) Vn(x) − u(x) = Sx(x − t)(u(t) − u(x)). 
(0,2π) 

For each x we split this integral into two parts, the set Γ(x) where x − t ∈ [0, δ] or 
x − t ∈ [2π − δ, 2π] and the remainder. So 
(14.20)	 � � 
|Vn(x) − u(x)| ≤ 

Γ(x) 
Sx(x − t)|u(t) − u(x)| + 

(0,2π)\Γ(x) 
Sx(x − t)|u(t) − u(x)|. 

Now on Γ(x) either |t − x| ≤ δ – the points are close together – or t is close to 0 and 
x to 2π so 2π − x + t ≤ δ or conversely, x is close to 0 and t to 2π so 2π − t + x ≤ δ. 
In any case, by assuming that u(0) = u(2π) and using the uniform continuity of a 
continuous function on [0, 2π], given � > 0 we can choose δ so small that 

(14.21)	 |u(x) − u(t)| ≤ �/2 on Γ(x). 

On the complement of Γ(x) we have (14.17) and since u is bounded we get the 
estimate 

(14.22) |Vn(x)−u(x)| ≤ �/2 
Γ(x) 

Sn(x−t)+(n+1)−1C �(δ) ≤ �/2+(n+1)−1C �(δ). 

Here the fact that Sn is non-negative and has integral one has been used again to 
estimate the integral of Sn(x − t) over Γ(x) by 1. Thus, having chosen δ to make 
the first term small, we can choose n large to make the second term small and it 
follows that 

(14.23) Vn(x) → u(x) uniformly on [0, 2π] as n →∞ 

under the assumption that u ∈ C([0, 2π]) satisfies u(0) = u(2π). 
So this proves Proposition 21 subject to the density in L2(0, 2π) of the continuous 

functions which vanish near (but not of course in a fixed neighbourhood) of the ends. 
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In fact we know that the L2 functions which vanish near the ends are dense since 
we can chop of and use the fact that 

(14.24) 
δ
lim 

0 (0,δ) 
|f |2 + 

(2π−δ,2π) 
|f |2 = 0. 

→

The L2 functions which vanish near the ends are in the closure of the span of 
the step functions which vanish near the ends. Each such step function can be 
approximated in L2((0, 2π)) by a continuous function which vanishes near the ends 
so we are done as far as density is concerned. So we have proved Theorem 12. 

Problem set 7, Due 11AM Tuesday 7 Apr. 

I will put up some practice problems for the test next Thursday when I get a 
chance. 

Problem 7.1 Question:- Is it possible to show the completeness of the Fourier 
basis 

exp(ikx)/
√

2π 

by computation? Maybe, see what you think. These questions are also intended to 
get you to say things clearly. 

(1) Work out the Fourier coefficients ck(t) = 
(0,2π) fte

−ikx of the step function 

(14.25) ft(x) = 
1 0 ≤ x < t 

0 t ≤ x ≤ 2π 

for each fixed t ∈ (0, 2π). 
(2) Explain why this Fourier series converges to ft in L2(0, 2π) if and only if 

(14.26) 2 |ck(t)|2 = 2πt − t2 , t ∈ (0, 2π). 
k>0 

(3) Write this condition out as a Fourier series and apply the argument again 
to show that the completeness of the Fourier basis implies identities for the 
sum of k−2 and k−4 . 

(4) Can you explain how reversing the argument, that knowledge of the sums of 
these two series should imply the completeness of the Fourier basis? There 
is a serious subtlety in this argument, and you get full marks for spotting 
it, without going ahead a using it to prove completeness. 

Problem 7.2 Prove that for appropriate constants dk, the functions dk sin(kx/2), 
k ∈ N, form an orthonormal basis for L2(0, 2π). 

Hint: The usual method is to use the basic result from class plus translation 
and rescaling to show that d� exp(ikx/2) k ∈ Z form an orthonormal basis of k 
L2(−2π, 2π). Then extend functions as odd from (0, 2π) to (−2π, 2π). 

Problem 7.3 Let ek, k ∈ N, be an orthonormal basis in a separable Hilbert space, 
H. Show that there is a uniquely defined bounded linear operator S : H −→ H, 
satisfying 

(14.27) Sej = ej+1 ∀ j ∈ N. 
Show that if B : H −→ H is a bounded linear operator then S +�B is not invertible 
if � < �0 for some �0 > 0. 

Hint:- Consider the linear functional L : H −→ C, Lu = (Bu, e1). Show that 
B�u = Bu − (Lu)e1 is a bounded linear operator from H to the Hilbert space 
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H1 = {u ∈ H; (u, e1) = 0}. Conclude that S + �B� is invertible as a linear map from 
H to H1 for small �. Use this to argue that S + �B cannot be an isomorphism from 
H to H by showing that either e1 is not in the range or else there is a non-trivial 
element in the null space. 

Problem 7.4 Show that the product of bounded operators on a Hilbert space is 
strong continuous, in the sense that if An and Bn are strong convergent sequences 
of bounded operators on H with limits A and B then the product AnBn is strongly 
convergent with limit AB. 

Hint: Be careful! Use the result in class which was deduced from the Uniform 
Boundedness Theorem. 
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Solutions to Problems 6 

Hint: Don’t pay too much attention to my hints, sometimes they are a little off-
the-cuff and may not be very helpfult. An example being the old hint for Problem 
6.2! 

Problem 6.1 Let H be a separable Hilbert space. Show that K ⊂ H is compact 
if and only if it is closed, bounded and has the property that any sequence in K 
which is weakly convergent sequence in H is (strongly) convergent. 

Hint:- In one direction use the result from class that any bounded sequence has 
a weakly convergent subsequence. 

Problem 6.2 Show that, in a separable Hilbert space, a weakly convergent se
quence {vn}, is (strongly) convergent if and only if the weak limit, v satisfies 

(14.28)	 �v�H = lim 
n→∞ 

�vn�H . 

Hint:- To show that this condition is sufficient, expand 

(14.29) (vn − v, vn − v) = �vn�2 − 2 Re(vn, v) + �v�2 . 

Problem 6.3 Show that a subset of a separable Hilbert space is compact if and 
only if it is closed and bounded and has the property of ‘finite dimensional approxi
mation’ meaning that for any � > 0 there exists a linear subspace DN ⊂ H of finite 
dimension such that 

(14.30) d(K,DN ) = sup inf {d(u, v)} ≤ �. 
u∈K v∈DN 

Hint:- To prove necessity of this condition use the ‘equi-small tails’ property of 
compact sets with respect to an orthonormal basis. To use the finite dimensional 
approximation condition to show that any weakly convergent sequence in K is 
strongly convergent, use the convexity result from class to define the sequence {vn

� }
in DN where vn

� is the closest point in DN to vn. Show that vn
� is weakly, hence 

strongly, convergent and hence deduce that {vn} is Cauchy. 
Problem 6.4 Suppose that A : H −→ H is a bounded linear operator with the 

property that A(H) ⊂ H is finite dimensional. Show that if vn is weakly convergent 
in H then Avn is strongly convergent in H. 

Problem 6.5 Suppose that H1 and H2 are two different Hilbert spaces and A : 
H1 −→ H2 is a bounded linear operator. Show that there is a unique bounded 
linear operator (the adjoint) A∗ : H2 −→ H1 with the property 

(14.31) �Au1, u2�H2 = �u1, A
∗u2�H1 ∀ u1 ∈ H1, u2 ∈ H2. 




