18.102 Introduction to Functional Analysis Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 10. TUESDAY, MAR 10

All of this is easy to find in the various reference notes and/or books so I will keep these notes very brief.

(1) Bessel's inequality

If in a preHilbert space $H, e_i, i = 1, ..., N$ are orthonormal – so $(e_i, e_j) = \delta_{ij}$ then for any element $u \in H$, set

(10.1)

$$v = \sum_{i=1}^{N} (u, e_i) e_i \text{ then}$$
$$\|v\|_H^2 = \sum_{i=1}^{N} |(u, e_i)|^2 \le \|u\|_H^2,$$
$$(u - v) \perp e_i, \ i = 1, \dots, N.$$

 $\sum_{n=1}^{N}$

The last statement follows immediately by computing $(u, e_j) = (v, e_j)$ and similarly $||v||^2$ can be computed directly. Then the inequality, which is Bessel's inequality, follows from Cauchy's inequality since from the last statement

(10.2)
$$||v||^2 = (v, v) = (v, u) + (v, v - u) = (v, u) = |(v, u)| \le ||v|| ||u||$$

shows $||v|| \le ||u||$.

(2) Orthonormal bases:

Since in the inequality in (10.1) the right side is independent of N it follows that if $\{e_i\}_{i=1}^{\infty}$ is a countable orthonormal set then

(10.3)
$$\sum_{i=1}^{\infty} |(u, e_i)|^2 \le ||u||_H^2.$$

From this it follows that the sequence

(10.4)
$$v_n = \sum_{i=1}^n (u, e_i) e_i$$

is Cauchy since if m > n,

(10.5)
$$\|v_n - v_m\|^2 = \sum_{n < j \le m} \|(u, e_j)\|^2 \le \sum_{j=n+1}^{\infty} \|(u, e_j)\|^2$$

and the right side is small if n is large, independent of m.

Lemma 5. If H is a Hilbert space – so now we assume completeness – and $\{e_i\}_{i=1}^{\infty}$ is an orthonormal sequence then for each $u \in H$,

(10.6)
$$v = \sum_{j=1}^{\infty} (u, e_j) e_j \in H$$

converges and $(u - v) \perp e_j$ for all j.

Proof. The limit exists since the sequence is Cauchy and the space is complete. The orthogonality follows from the fact that $(u - v_n, e_j) = 0$ as soon as $n \ge j$ and

(10.7)
$$(u - v, e_j) = \lim_{n \to \infty} (u - v_n, e_j) = 0$$

by continuity of the inner product (which follows from Cauchy's inequality). $\hfill \Box$

Now, we say an orthonormal sequence is complete, or is and orthonormal basis of H if $u \perp e_j = 0$ for all j implies u = 0. Then we see:-

Proposition 15. If $\{e_j \|_{j=1}^{\infty}$ is an orthonormal basis in a Hilbert space H then

(10.8)
$$u = \sum_{j=1}^{\infty} (u, e_j) e_j \ \forall \ u \in H.$$

Proof. From the lemma the series converges to v and $(u - v) \perp e_j$ for all j so by the assumed completeness, u = v which is (10.8).

(3) Gram-Schmidt

Theorem 6. Every separable Hilbert space has an orthonormal basis.

Proof. Take a countable dense subset – which can be arranged as a sequence $\{v_j\}$ and the existence of which is the definition of separability – and orthonormalize it. Thus if $v_1 \neq 0$ set $e_i = v_1/||v_1||$. Proceeding by induction we can suppose to have found for a given integer n elements e_i , $i = 1, \ldots, m$, where $m \leq n$, which are orthonormal and such that the linear span

(10.9)
$$\operatorname{sp}(e_1,\ldots,e_m) = \operatorname{sp}(v_1,\ldots,v_n).$$

To show the inductive step observe that if v_{n+1} is in the span(s) in (10.9) then the same e_i work for n + 1. So it follows that

(10.10)
$$w = v_{n+1} - \sum_{j=1}^{n} (v_{n+1}, e_j) e_j \neq 0 \text{ so } e_{m+1} = \frac{w}{\|w\|}$$

makes sense. Adding e_{m+1} gives the equality of the spans for n+1.

Thus we may continue indefinitely. There are only two possibilities, either we get a finite set of e_i 's or an infinite sequence. In either case this must be an orthonormal basis. That is we claim

This uses the density of the v_n 's. That is, there must exist a sequence w_j where each w_j is a v_n , such that $w_j \to u$ in H. Now, each each v_n , and hence each w_j , is a finite linear combination of e_k 's so, by Bessel's inequality

(10.12)
$$||w_j||^2 = \sum_k |(w_j, e_k)|^2 = \sum_k |(u - w_j, e_k)|^2 \le ||u - w_j||^2$$

where $(u, e_j) = 0$ for all j has been used. Thus $||w_j|| \to 0$ and u = 0. \Box

(4) Isomorphism to l^2

A finite dimensional Hilbert space is isomorphic to \mathbb{C}^n with its standard inner product. Similarly from the result above

Proposition 16. Any infinite-dimensional separable Hilbert space (over the complex numbers) is isomorphic to l^2 , that is there exists a linear map

60

which is 1-1, onto and satisfies $(Tu, Tv)_{l^2} = (u, v)_H$ and $||Tu||_{l^2} = ||u||_H$ for all $u, v \in H$.

 $\mathit{Proof.}\xspace$ Choose an orthonormal basis – which exists by the discussion above and set

(10.14)
$$Tu = \{(u, e_j) \|_{j=1}^{\infty}$$

This maps H into l^2 by Bessel's inequality. Moreover, it is linear since the entries in the sequence are linear in u. It is 1-1 since Tu = 0 implies $(u, e_j) = 0$ for all j implies u = 0 by the assumed completeness of the orthonormal basis. It is surjective since if $\{c_j\}_{j=1}^{\infty}$ then

(10.15)
$$u = \sum_{j=1}^{\infty} c_j e_j$$

converges in H. This is the same argument as above – the sequence of partial sums is Cauchy by Bessel's inequality. Again by continuity of the inner product, $Tu = \{c_j\}$ so T is surjective.

The equality of the norms follows from equality of the inner products and the latter follows by computation for finite linear combinations of the e_j and then in general by continuity.

PROBLEM SET 5, DUE 11AM TUESDAY 17 MAR.

You should be thinking about using Lebesgue's dominated convergence at several points below.

Problem 5.1

Let $f : \mathbb{R} \longrightarrow \mathbb{C}$ be an element of $\mathcal{L}^1(\mathbb{R})$. Define

(10.16)
$$f_L(x) = \begin{cases} f(x) & x \in [-L, L] \\ 0 & \text{otherwise.} \end{cases}$$

Show that $f_L \in \mathcal{L}^1(\mathbb{R})$ and that $\int |f_L - f| \to 0$ as $L \to \infty$.

Problem 5.2 Consider a real-valued function $f : \mathbb{R} \longrightarrow \mathbb{R}$ which is locally integrable in the sense that

(10.17)
$$g_L(x) = \begin{cases} f(x) & x \in [-L, L] \\ 0 & x \in \mathbb{R} \setminus [-L, L] \end{cases}$$

is Lebesgue integrable of each $L \in \mathbb{N}$.

(1) Show that for each fixed L the function

(10.18)
$$g_L^{(N)}(x) = \begin{cases} g_L(x) & \text{if } g_L(x) \in [-N, N] \\ N & \text{if } g_L(x) > N \\ -N & \text{if } g_L(x) < -N \end{cases}$$

- is Lebesgue integrable. (2) Show that $\int |g_L^{(N)} g_L| \to 0$ as $N \to \infty$. (3) Show that there is a sequence, h_n , of step functions such that

(10.19)
$$h_n(x) \to f(x)$$
 a.e. in \mathbb{R}

(4) Defining

(10.20)
$$h_{n,L}^{(N)} = \begin{cases} 0 & x \notin [-L,L] \\ h_n(x) & \text{if } h_n(x) \in [-N,N], \ x \in [-L,L] \\ N & \text{if } h_n(x) > N, \ x \in [-L,L] \\ -N & \text{if } h_n(x) < -N, \ x \in [-L,L] \end{cases}$$

Show that $\int |h_{n,L}^{(N)} - g_L^{(N)}| \to 0$ as $n \to \infty$.

Problem 5.3 Show that $\mathcal{L}^2(\mathbb{R})$ is a Hilbert space.

First working with real functions, define $\mathcal{L}^2(\mathbb{R})$ as the set of functions $f:\mathbb{R}\longrightarrow\mathbb{R}$ which are locally integrable and such that $|f|^2$ is integrable.

- (1) For such f choose h_n and define g_L , $g_L^{(N)}$ and $h_n^{(N)}$ by (10.17), (10.18) and (10.20).
- (10.20). (2) Show using the sequence $h_{n,L}^{(N)}$ for fixed N and L that $g_L^{(N)}$ and $(g_L^{(N)})^2$ are in $\mathcal{L}^1(\mathbb{R})$ and that $\int |(h_{n,L}^{(N)})^2 (g_L^{(N)})^2| \to 0$ as $n \to \infty$. (3) Show that $(g_L)^2 \in \mathcal{L}^1(\mathbb{R})$ and that $\int |(g_L^{(N)})^2 (g_L)^2| \to 0$ as $N \to \infty$. (4) Show that $\int |(g_L)^2 f^2| \to 0$ as $L \to \infty$.

- (5) Show that $f, g \in \mathcal{L}^2(\mathbb{R})$ then $fg \in \mathcal{L}^1(\mathbb{R})$ and that

(10.21)
$$|\int fg| \le \int |fg| \le ||f||_{L^2} ||g||_{L^2}, \ ||f||_{L^2}^2 = \int |f|^2.$$

- (6) Use these constructions to show that $\mathcal{L}^2(\mathbb{R})$ is a linear space.
- (7) Conclude that the quotient space $L^2(\mathbb{R}) = \mathcal{L}^2(\mathbb{R})/\mathcal{N}$, where \mathcal{N} is the space of null functions, is a real Hilbert space.
- (8) Extend the arguments to the case of complex-valued functions.

Problem 5.4

Consider the sequence space

(10.22)
$$h^{2,1} = \left\{ c : \mathbb{N} \ni j \longmapsto c_j \in \mathbb{C}; \sum_j (1+j^2) |c_j|^2 < \infty \right\}$$

(1) Show that

(10.23)
$$h^{2,1} \times h^{2,1} \ni (c,d) \longmapsto \langle c,d \rangle = \sum_{j} (1+j^2)c_j \overline{d_j}$$

is an Hermitian inner form which turns $h^{2,1}$ into a Hilbert space. (2) Denoting the norm on this space by $\|\cdot\|_{2,1}$ and the norm on l^2 by $\|\cdot\|_2$, show that

(10.24)
$$h^{2,1} \subset l^2, \ \|c\|_2 \le \|c\|_{2,1} \ \forall \ c \in h^{2,1}.$$

Problem 5.5 In the separable case, prove Riesz Representation Theorem directly. Choose an orthonormal basis $\{e_i\}$ of the separable Hilbert space H. Suppose $T:H\longrightarrow \mathbb{C}$ is a bounded linear functional. Define a sequence

(10.25)
$$w_i = \overline{T(e_i)}, \ i \in \mathbb{N}.$$

(1) Now, recall that $|Tu| \leq C ||u||_H$ for some constant C. Show that for every finite N,

(10.26)
$$\sum_{j=1}^{N} |w_i|^2 \le C^2.$$

(2) Conclude that $\{w_i\} \in l^2$ and that

(10.27)
$$w = \sum_{i} w_i e_i \in H.$$

(3) Show that

(10.28)
$$T(u) = \langle u, w \rangle_H \ \forall \ u \in H \text{ and } \|T\| = \|w\|_H.$$

Solutions to Problem set 4

Just to compensate for last week, I will make this problem set too short and easy!

Problem 4.1

Let H be a normed space in which the norm satisfies the parallelogram law:

(10.29) $\|u+v\|^2 + \|u-v\|^2 = 2(\|u\|^2 + \|v\|^2) \ \forall \ u, v \in H.$

Show that the norm comes from a positive definite sesquilinear (i.e. Hermitian) inner product. Big Hint:- Try

(10.30)
$$(u,v) = \frac{1}{4} \left(\|u+v\|^2 - \|u-v\|^2 + i\|u+iv\|^2 - i\|u-iv\|^2 \right)!$$

Solution: Setting u = v, even without the parallelogram law,

(10.31)
$$(u,u) = \frac{1}{4} ||2u||^2 + i||(1+i)u||^2 - i||(1-i)u||^2) = ||u||^2.$$

So the point is that the parallelogram law shows that (u, v) is indeed an Hermitian inner product. Taking complex conjugates and using properties of the norm, ||u + iv|| = ||v - iu|| etc

(10.32)
$$\overline{(u,v)} = \frac{1}{4} \left(\|v+u\|^2 - \|v-u\|^2 - i\|v-iu\|^2 + i\|v+iu\|^2 \right) = (v,u).$$

Thus we only need check the linearity in the first variable. This is a little tricky! First compute away. Directly from the identity (u, -v) = -(u, v) so (-u, v) = -(u, v) using (10.32). Now,

$$\begin{aligned} (2u,v) &= \frac{1}{4} (\|u + (u+v)\|^2 - \|u + (u-v)\|^2 \\ &+ i\|u + (u+iv)\|^2 - i\|u + (u-iv)\|^2) \\ &= \frac{1}{2} (\|u+v\|^2 + \|u\|^2 - \|u-v\|^2 - \|u\|^2 \\ &+ i\|(u+iv)\|^2 + i\|u\|^2 - i\|u-iv\|^2 - i\|u\|^2) \\ &- \frac{1}{4} (\|u - (u+v)\|^2 - \|u - (u-v)\|^2 + i\|u - (u+iv)\|^2 - i\|u - (u-iv)\|^2) \\ &= 2(u,v). \end{aligned}$$

Using this and (10.32), for any u, u' and v,

$$(u + u', v) = \frac{1}{2}(u + u', 2v)$$

$$= \frac{1}{2}\frac{1}{4}(||(u + v) + (u' + v)||^{2} - ||(u - v) + (u' - v)||^{2} + i||(u + iv) + (u - iv)||^{2} - i||(u - iv) + (u' - iv)||^{2})$$

(10.34)

$$= \frac{1}{4}(||u + v|| + ||u' + v||^{2} - ||u - v|| - ||u' - v||^{2} + i||(u + iv)||^{2} + i||u - iv||^{2} - i||u - iv|| - i||u' - iv||^{2}) - \frac{1}{2}\frac{1}{4}(||(u + v) - (u' + v)||^{2} - ||(u - v) - (u' - v)||^{2} + i||(u + iv) - (u - iv)||^{2} - i||(u - iv) = (u' - iv)||^{2}) = (u, v) + (u', v).$$

Using the second identity to iterate the first it follows that (ku, v) = k(u, v) for any u and v and any positive integer k. Then setting nu' = u for any other positive integer and r = k/n, it follows that

(10.35)
$$(ru, v) = (ku', v) = k(u', v) = rn(u', v) = r(u, v)$$

where the identity is reversed. Thus it follows that (ru, v) = r(u, v) for any rational r. Now, from the definition both sides are continuous in the first element, with respect to the norm, so we can pass to the limit as $r \to x$ in \mathbb{R} . Also directly from the definition,

(10.36)
$$(iu, v) = \frac{1}{4} \left(\|iu + v\|^2 - \|iu - v\|^2 + i\|iu + iv\|^2 - i\|iu - iv\|^2 \right) = i(u, v)$$

so now full linearity in the first variable follows and that is all we need.

Problem 4.2

Let H be a finite dimensional (pre)Hilbert space. So, by definition H has a basis $\{v_i\}_{i=1}^n$, meaning that any element of H can be written

(10.37)
$$v = \sum_{i} c_i v_i$$

and there is no dependence relation between the v_i 's – the presentation of v = 0 in the form (10.37) is unique. Show that H has an orthonormal basis, $\{e_i\}_{i=1}^n$ satisfying $(e_i, e_j) = \delta_{ij}$ (= 1 if i = j and 0 otherwise). Check that for the orthonormal basis the coefficients in (10.37) are $c_i = (v, e_i)$ and that the map

(10.38)
$$T: H \ni v \longmapsto ((v, e_i)) \in \mathbb{C}^n$$

is a linear isomorphism with the properties

(10.39)
$$(u,v) = \sum_{i} (Tu)_{i} \overline{(Tv)_{i}}, \ \|u\|_{H} = \|Tu\|_{\mathbb{C}^{n}} \ \forall \ u,v \in H.$$

Why is a finite dimensional preHilbert space a Hilbert space?

Solution: Since H is assumed to be finite dimensional, it has a basis v_i , i = 1, ..., n. This basis can be replaced by an orthonormal basis in n steps. First replace v_1 by $e_1 = v_1/||v_1||$ where $||v_1|| \neq 0$ by the linear independence of the basis. Then replace v_2 by

(10.40)
$$e_2 = w_2 / ||w_2||, w_2 = v_2 - \langle v_2, e_1 \rangle e_1.$$

Here $w_2 \perp e_1$ as follows by taking inner products; w_2 cannot vanish since v_2 and e_1 must be linearly independent. Proceeding by finite induction we may assume that we have replaced $v_1, v_2, \ldots, v_k, k < n$, by e_1, e_2, \ldots, e_k which are orthonormal and span the same subspace as the v_i 's $i = 1, \ldots, k$. Then replace v_{k+1} by

(10.41)
$$e_{k+1} = w_{k+1} / ||w_{k+1}||, \ w_{k+1} = v_{k+1} - \sum_{i=1}^{k} \langle v_{k+1}, e_i \rangle e_i$$

By taking inner products, $w_{k+1} \perp e_i$, i = 1, ..., k and $w_{k+1} \neq 0$ by the linear independence of the v_i 's. Thus the orthonormal set has been increased by one element preserving the same properties and hence the basis can be orthonormalized.

Now, for each $u \in H$ set

(10.42)
$$c_i = \langle u, e_i \rangle.$$

It follows that $U = u - \sum_{i=1}^{n} c_i e_i$ is orthogonal to all the e_i since

(10.43)
$$\langle u, e_j \rangle = \langle u, e_j \rangle - \sum_i c_i \langle e_i, e_j \rangle = \langle u.e_j \rangle - c_j = 0.$$

This implies that U = 0 since writing $U = \sum_{i} d_{i}e_{i}$ it follows that $d_{i} = \langle U, e_{i} \rangle = 0$.

Now, consider the map (10.38). We have just shown that this map is injective, since Tu = 0 implies $c_i = 0$ for all *i* and hence u = 0. It is linear since the c_i depend linearly on *u* by the linearity of the inner product in the first variable. Moreover it is surjective, since for any $c_i \in \mathbb{C}$, $u = \sum_i c_i e_i$ reproduces the c_i through (10.42).

Thus T is a linear isomorphism and the first identity in (10.39) follows by direct computation:-

(10.44)

$$\sum_{i=1}^{n} (Tu)_{i} \overline{(Tv)_{i}} = \sum_{i} \langle u, e_{i} \rangle$$

$$= \langle u, \sum_{i} \langle v, e_{i} \rangle e_{i} \rangle$$

$$= \langle u, v \rangle.$$

Setting u = v shows that $||Tu||_{\mathbb{C}^n} = ||u||_H$.

Now, we know that \mathbb{C}^n is complete with its standard norm. Since T is an isomorphism, it carries Cauchy sequences in H to Cauchy sequences in \mathbb{C}^n and T^{-1} carries convergent sequences in \mathbb{C}^n to convergent sequences in H, so every Cauchy sequence in H is convergent. Thus H is complete.