MIT OpenCourseWare
http://ocw.mit.edu

18.102 Introduction to Functional Analysis

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 10. Tuesday, Mar 10
All of this is easy to find in the various reference notes and/or books so I will keep these notes very brief.
(1) Bessel's inequality

If in a preHilbert space $H, e_{i}, i=1, \ldots, N$ are orthonormal - so $\left(e_{i}, e_{j}\right)=$ $\delta_{i j}$ then for any element $u \in H$, set

$$
\begin{gathered}
v=\sum_{i=1}^{N}\left(u, e_{i}\right) e_{i} \text { then } \\
\|v\|_{H}^{2}=\sum_{i=1}^{N}\left|\left(u, e_{i}\right)\right|^{2} \leq\|u\|_{H}^{2}, \\
(u-v) \perp e_{i}, i=1, \ldots, N .
\end{gathered}
$$

The last statement follows immediately by computing $\left(u, e_{j}\right)=\left(v, e_{j}\right)$ and similarly $\|v\|^{2}$ can be computed directly. Then the inequality, which is Bessel's inequality, follows from Cauchy's inequality since from the last statement

$$
\|v\|^{2}=(v, v)=(v, u)+(v, v-u)=(v, u)=|(v, u)| \leq\|v\|\|u\|
$$

shows $\|v\| \leq\|u\|$.
(2) Orthonormal bases:

Since in the inequality in (10.1) the right side is independent of N it follows that if $\left\{e_{i}\right\}_{i=1}^{\infty}$ is a countable orthonormal set then

$$
\sum_{i=1}^{\infty}\left|\left(u, e_{i}\right)\right|^{2} \leq\|u\|_{H}^{2}
$$

From this it follows that the sequence

$$
\begin{equation*}
v_{n}=\sum_{i=1}^{n}\left(u, e_{i}\right) e_{i} \tag{10.4}
\end{equation*}
$$

is Cauchy since if $m>n$,

$$
\left\|v_{n}-v_{m}\right\|^{2}=\left.\sum_{n<j \leq m}\left\|\left.\left(u, e_{j}\right)\right|^{2} \leq \sum_{j=n+1}^{\infty}\right\|\left(u, e_{j}\right)\right|^{2}
$$

and the right side is small if n is large, independent of m.
Lemma 5. If H is a Hilbert space - so now we assume completeness - and $\left\{e_{i}\right\}_{i=1}^{\infty}$ is an orthonormal sequence then for each $u \in H$,

$$
v=\sum_{j=1}^{\infty}\left(u, e_{j}\right) e_{j} \in H
$$

converges and $(u-v) \perp e_{j}$ for all j.
Proof. The limit exists since the sequence is Cauchy and the space is complete. The orthogonality follows from the fact that $\left(u-v_{n}, e_{j}\right)=0$ as soon as $n \geq j$ and

$$
\left(u-v, e_{j}\right)=\lim _{n \rightarrow \infty}\left(u-v_{n}, e_{j}\right)=0
$$

by continuity of the inner product (which follows from Cauchy's inequality).

Now, we say an orthonormal sequence is complete, or is and orthonormal basis of H if $u \perp e_{j}=0$ for all j implies $u=0$. Then we see:-

Proposition 15. If $\left\{e_{j} \|_{j=1}^{\infty}\right.$ is an orthonormal basis in a Hilbert space H then

$$
u=\sum_{j=1}^{\infty}\left(u, e_{j}\right) e_{j} \forall u \in H
$$

Proof. From the lemma the series converges to v and $(u-v) \perp e_{j}$ for all j so by the assumed completeness, $u=v$ which is (10.8).
(3) Gram-Schmidt

Theorem 6. Every separable Hilbert space has an orthonormal basis.
Proof. Take a countable dense subset - which can be arranged as a sequence $\left\{v_{j}\right\}$ and the existence of which is the definition of separability and orthonormalize it. Thus if $v_{1} \neq 0$ set $e_{i}=v_{1} /\left\|v_{1}\right\|$. Proceeding by induction we can suppose to have found for a given integer n elements e_{i}, $i=1, \ldots, m$, where $m \leq n$, which are orthonormal and such that the linear span

$$
\operatorname{sp}\left(e_{1}, \ldots, e_{m}\right)=\operatorname{sp}\left(v_{1}, \ldots, v_{n}\right)
$$

To show the inductive step observe that if v_{n+1} is in the span(s) in (10.9) then the same e_{i} work for $n+1$. So it follows that

$$
w=v_{n+1}-\sum_{j=1}^{n}\left(v_{n+1}, e_{j}\right) e_{j} \neq 0 \text { so } e_{m+1}=\frac{w}{\|w\|}
$$

makes sense. Adding e_{m+1} gives the equality of the spans for $n+1$.
Thus we may continue indefinitely. There are only two possibilities, either we get a finite set of e_{i} 's or an infinite sequence. In either case this must be an orthonormal basis. That is we claim

$$
H \ni u \perp e_{j} \forall j \Longrightarrow u=0
$$

This uses the density of the v_{n} 's. That is, there must exist a sequence w_{j} where each w_{j} is a v_{n}, such that $w_{j} \rightarrow u$ in H. Now, each each v_{n}, and hence each w_{j}, is a finite linear combination of e_{k} 's so, by Bessel's inequality

$$
\left\|w_{j}\right\|^{2}=\sum_{k}\left|\left(w_{j}, e_{k}\right)\right|^{2}=\sum_{k}\left|\left(u-w_{j}, e_{k}\right)\right|^{2} \leq\left\|u-w_{j}\right\|^{2}
$$

where $\left(u, e_{j}\right)=0$ for all j has been used. Thus $\left\|w_{j}\right\| \rightarrow 0$ and $u=0$.
(4) Isomorphism to l^{2}

A finite dimensional Hilbert space is isomorphic to \mathbb{C}^{n} with its standard inner product. Similarly from the result above
Proposition 16. Any infinite-dimensional separable Hilbert space (over the complex numbers) is isomorphic to l^{2}, that is there exists a linear map

$$
\begin{equation*}
T: H \longrightarrow L^{2} \tag{10.13}
\end{equation*}
$$

which is 1-1, onto and satisfies $(T u, T v)_{l^{2}}=(u, v)_{H}$ and $\|T u\|_{l^{2}}=\|u\|_{H}$ for all $u, v \in H$.
Proof. Choose an orthonormal basis - which exists by the discussion above and set

$$
\begin{equation*}
T u=\left\{\left(u, e_{j}\right) \|_{j=1}^{\infty} .\right. \tag{10.14}
\end{equation*}
$$

This maps H into l^{2} by Bessel's inequality. Moreover, it is linear since the entries in the sequence are linear in u. It is $1-1$ since $T u=0$ implies $\left(u, e_{j}\right)=0$ for all j implies $u=0$ by the assumed completeness of the orthonormal basis. It is surjective since if $\left\{c_{j}\right\}_{j=1}^{\infty}$ then

$$
\begin{equation*}
u=\sum_{j=1}^{\infty} c_{j} e_{j} \tag{10.15}
\end{equation*}
$$

converges in H. This is the same argument as above - the sequence of partial sums is Cauchy by Bessel's inequality. Again by continuity of the inner product, $T u=\left\{c_{j}\right\}$ so T is surjective.

The equality of the norms follows from equality of the inner products and the latter follows by computation for finite linear combinations of the e_{j} and then in general by continuity.

Problem set 5, Due 11AM Tuesday 17 Mar.

You should be thinking about using Lebesgue's dominated convergence at several points below.

Problem 5.1
Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be an element of $\mathcal{L}^{1}(\mathbb{R})$. Define

$$
f_{L}(x)= \begin{cases}f(x) & x \in[-L, L] \tag{10.16}\\ 0 & \text { otherwise }\end{cases}
$$

Show that $f_{L} \in \mathcal{L}^{1}(\mathbb{R})$ and that $\int\left|f_{L}-f\right| \rightarrow 0$ as $L \rightarrow \infty$.
Problem 5.2 Consider a real-valued function $f: \mathbb{R} \longrightarrow \mathbb{R}$ which is locally integrable in the sense that

$$
g_{L}(x)= \begin{cases}f(x) & x \in[-L, L] \tag{10.17}\\ 0 & x \in \mathbb{R} \backslash[-L, L]\end{cases}
$$

is Lebesgue integrable of each $L \in \mathbb{N}$.
(1) Show that for each fixed L the function

$$
g_{L}^{(N)}(x)= \begin{cases}g_{L}(x) & \text { if } g_{L}(x) \in[-N, N] \tag{10.18}\\ N & \text { if } g_{L}(x)>N \\ -N & \text { if } g_{L}(x)<-N\end{cases}
$$

is Lebesgue integrable.
(2) Show that $\int\left|g_{L}^{(N)}-g_{L}\right| \rightarrow 0$ as $N \rightarrow \infty$.
(3) Show that there is a sequence, h_{n}, of step functions such that

$$
\begin{equation*}
h_{n}(x) \rightarrow f(x) \text { a.e. in } \mathbb{R} . \tag{10.19}
\end{equation*}
$$

(4) Defining

$$
h_{n, L}^{(N)}= \begin{cases}0 & x \notin[-L, L] \tag{10.20}\\ h_{n}(x) & \text { if } h_{n}(x) \in[-N, N], x \in[-L, L] \\ N & \text { if } h_{n}(x)>N, x \in[-L, L] \\ -N & \text { if } h_{n}(x)<-N, x \in[-L, L]\end{cases}
$$

Show that $\int\left|h_{n, L}^{(N)}-g_{L}^{(N)}\right| \rightarrow 0$ as $n \rightarrow \infty$.
Problem 5.3 Show that $\mathcal{L}^{2}(\mathbb{R})$ is a Hilbert space.
First working with real functions, define $\mathcal{L}^{2}(\mathbb{R})$ as the set of functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ which are locally integrable and such that $|f|^{2}$ is integrable.
(1) For such f choose h_{n} and define $g_{L}, g_{L}^{(N)}$ and $h_{n}^{(N)}$ by (10.17), (10.18) and (10.20).
(2) Show using the sequence $h_{n, L}^{(N)}$ for fixed N and L that $g_{L}^{(N)}$ and $\left(g_{L}^{(N)}\right)^{2}$ are in $\mathcal{L}^{1}(\mathbb{R})$ and that $\int\left|\left(h_{n, L}^{(N)}\right)^{2}-\left(g_{L}^{(N)}\right)^{2}\right| \rightarrow 0$ as $n \rightarrow \infty$.
(3) Show that $\left(g_{L}\right)^{2} \in \mathcal{L}^{1}(\mathbb{R})$ and that $\int\left|\left(g_{L}^{(N)}\right)^{2}-\left(g_{L}\right)^{2}\right| \rightarrow 0$ as $N \rightarrow \infty$.
(4) Show that $\int\left|\left(g_{L}\right)^{2}-f^{2}\right| \rightarrow 0$ as $L \rightarrow \infty$.
(5) Show that $f, g \in \mathcal{L}^{2}(\mathbb{R})$ then $f g \in \mathcal{L}^{1}(\mathbb{R})$ and that

$$
\begin{equation*}
\left|\int f g\right| \leq \int|f g| \leq\|f\|_{L^{2}}\|g\|_{L^{2}},\|f\|_{L^{2}}^{2}=\int|f|^{2} \tag{10.21}
\end{equation*}
$$

(6) Use these constructions to show that $\mathcal{L}^{2}(\mathbb{R})$ is a linear space.
(7) Conclude that the quotient space $L^{2}(\mathbb{R})=\mathcal{L}^{2}(\mathbb{R}) / \mathcal{N}$, where \mathcal{N} is the space of null functions, is a real Hilbert space.
(8) Extend the arguments to the case of complex-valued functions.

Problem 5.4
Consider the sequence space

$$
\begin{equation*}
h^{2,1}=\left\{c: \mathbb{N} \ni j \longmapsto c_{j} \in \mathbb{C} ; \sum_{j}\left(1+j^{2}\right)\left|c_{j}\right|^{2}<\infty\right\} . \tag{10.22}
\end{equation*}
$$

(1) Show that

$$
\begin{equation*}
h^{2,1} \times h^{2,1} \ni(c, d) \longmapsto\langle c, d\rangle=\sum_{j}\left(1+j^{2}\right) c_{j} \overline{d_{j}} \tag{10.23}
\end{equation*}
$$

is an Hermitian inner form which turns $h^{2,1}$ into a Hilbert space.
(2) Denoting the norm on this space by $\|\cdot\|_{2,1}$ and the norm on l^{2} by $\|\cdot\|_{2}$, show that

$$
\begin{equation*}
h^{2,1} \subset l^{2},\|c\|_{2} \leq\|c\|_{2,1} \forall c \in h^{2,1} . \tag{10.24}
\end{equation*}
$$

Problem 5.5 In the separable case, prove Riesz Representation Theorem directly. Choose an orthonormal basis $\left\{e_{i}\right\}$ of the separable Hilbert space H. Suppose $T: H \longrightarrow \mathbb{C}$ is a bounded linear functional. Define a sequence

$$
\begin{equation*}
w_{i}=\overline{T\left(e_{i}\right)}, i \in \mathbb{N} \tag{10.25}
\end{equation*}
$$

(1) Now, recall that $|T u| \leq C\|u\|_{H}$ for some constant C. Show that for every finite N,

$$
\begin{equation*}
\sum_{j=1}^{N}\left|w_{i}\right|^{2} \leq C^{2} \tag{10.26}
\end{equation*}
$$

(2) Conclude that $\left\{w_{i}\right\} \in l^{2}$ and that

$$
\begin{equation*}
w=\sum_{i} w_{i} e_{i} \in H \tag{10.27}
\end{equation*}
$$

(3) Show that

$$
\begin{equation*}
T(u)=\langle u, w\rangle_{H} \forall u \in H \text { and }\|T\|=\|w\|_{H} . \tag{10.28}
\end{equation*}
$$

Solutions to Problem set 4

Just to compensate for last week, I will make this problem set too short and easy!

Problem 4.1
Let H be a normed space in which the norm satisfies the parallelogram law:

$$
\begin{equation*}
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right) \forall u, v \in H \tag{10.29}
\end{equation*}
$$

Show that the norm comes from a positive definite sesquilinear (i.e. Hermitian) inner product. Big Hint:- Try

$$
\begin{equation*}
(u, v)=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}+i\|u+i v\|^{2}-i\|u-i v\|^{2}\right)! \tag{10.30}
\end{equation*}
$$

Solution: Setting $u=v$, even without the parallelogram law,

$$
\begin{equation*}
\left.(u, u)=\frac{1}{4}\|2 u\|^{2}+i\|(1+i) u\|^{2}-i\|(1-i) u\|^{2}\right)=\|u\|^{2} \tag{10.31}
\end{equation*}
$$

So the point is that the parallelogram law shows that (u, v) is indeed an Hermitian inner product. Taking complex conjugates and using properties of the norm, $\| u+$ $i v\|=\| v-i u \|$ etc

$$
\begin{equation*}
\overline{(u, v)}=\frac{1}{4}\left(\|v+u\|^{2}-\|v-u\|^{2}-i\|v-i u\|^{2}+i\|v+i u\|^{2}\right)=(v, u) \tag{10.32}
\end{equation*}
$$

Thus we only need check the linearity in the first variable. This is a little tricky! First compute away. Directly from the identity $(u,-v)=-(u, v)$ so $(-u, v)=$ $-(u, v)$ using (10.32). Now,

$$
\begin{align*}
& (2 u, v)=\frac{1}{4}\left(\|u+(u+v)\|^{2}-\|u+(u-v)\|^{2}\right. \tag{10.33}\\
& \left.\quad+i\|u+(u+i v)\|^{2}-i\|u+(u-i v)\|^{2}\right) \\
& =\frac{1}{2}\left(\|u+v\|^{2}+\|u\|^{2}-\|u-v\|^{2}-\|u\|^{2}\right. \\
& \left.\quad+i\|(u+i v)\|^{2}+i\|u\|^{2}-i\|u-i v\|^{2}-i\|u\|^{2}\right) \\
& \quad-\frac{1}{4}\left(\|u-(u+v)\|^{2}-\|u-(u-v)\|^{2}+i\|u-(u+i v)\|^{2}-i\|u-(u-i v)\|^{2}\right) \\
& =2(u, v)
\end{align*}
$$

Using this and (10.32), for any u, u^{\prime} and v,

$$
\begin{aligned}
& \left(u+u^{\prime}, v\right)=\frac{1}{2}\left(u+u^{\prime}, 2 v\right) \\
= & \frac{1}{2} \frac{1}{4}\left(\left\|(u+v)+\left(u^{\prime}+v\right)\right\|^{2}-\left\|(u-v)+\left(u^{\prime}-v\right)\right\|^{2}\right. \\
& \left.+i\|(u+i v)+(u-i v)\|^{2}-i\left\|(u-i v)+\left(u^{\prime}-i v\right)\right\|^{2}\right) \\
= & \frac{1}{4}\left(\|u+v\|+\left\|u^{\prime}+v\right\|^{2}-\|u-v\|-\left\|u^{\prime}-v\right\|^{2}\right. \\
& \left.+i\|(u+i v)\|^{2}+i\|u-i v\|^{2}-i\|u-i v\|-i\left\|u^{\prime}-i v\right\|^{2}\right) \\
& -\frac{1}{2} \frac{1}{4}\left(\left\|(u+v)-\left(u^{\prime}+v\right)\right\|^{2}-\left\|(u-v)-\left(u^{\prime}-v\right)\right\|^{2}\right. \\
& \left.+i\|(u+i v)-(u-i v)\|^{2}-i\left\|(u-i v)=\left(u^{\prime}-i v\right)\right\|^{2}\right) \\
& =(u, v)+\left(u^{\prime}, v\right) .
\end{aligned}
$$

Using the second identity to iterate the first it follows that $(k u, v)=k(u, v)$ for any u and v and any positive integer k. Then setting $n u^{\prime}=u$ for any other positive integer and $r=k / n$, it follows that

$$
\begin{equation*}
(r u, v)=\left(k u^{\prime}, v\right)=k\left(u^{\prime}, v\right)=r n\left(u^{\prime}, v\right)=r(u, v) \tag{10.35}
\end{equation*}
$$

where the identity is reversed. Thus it follows that $(r u, v)=r(u, v)$ for any rational r. Now, from the definition both sides are continuous in the first element, with respect to the norm, so we can pass to the limit as $r \rightarrow x$ in \mathbb{R}. Also directly from the definition,

$$
\begin{equation*}
(i u, v)=\frac{1}{4}\left(\|i u+v\|^{2}-\|i u-v\|^{2}+i\|i u+i v\|^{2}-i\|i u-i v\|^{2}\right)=i(u, v) \tag{10.36}
\end{equation*}
$$

so now full linearity in the first variable follows and that is all we need.
Problem 4.2
Let H be a finite dimensional (pre)Hilbert space. So, by definition H has a basis $\left\{v_{i}\right\}_{i=1}^{n}$, meaning that any element of H can be written

$$
\begin{equation*}
v=\sum_{i} c_{i} v_{i} \tag{10.37}
\end{equation*}
$$

and there is no dependence relation between the v_{i} 's - the presentation of $v=0$ in the form (10.37) is unique. Show that H has an orthonormal basis, $\left\{e_{i}\right\}_{i=1}^{n}$ satisfying $\left(e_{i}, e_{j}\right)=\delta_{i j}$ ($=1$ if $i=j$ and 0 otherwise). Check that for the orthonormal basis the coefficients in (10.37) are $c_{i}=\left(v, e_{i}\right)$ and that the map

$$
\begin{equation*}
T: H \ni v \longmapsto\left(\left(v, e_{i}\right)\right) \in \mathbb{C}^{n} \tag{10.38}
\end{equation*}
$$

is a linear isomorphism with the properties

$$
\begin{equation*}
(u, v)=\sum_{i}(T u)_{i} \overline{(T v)_{i}},\|u\|_{H}=\|T u\|_{\mathbb{C}^{n}} \forall u, v \in H \tag{10.39}
\end{equation*}
$$

Why is a finite dimensional preHilbert space a Hilbert space?
Solution: Since H is assumed to be finite dimensional, it has a basis $v_{i}, i=$ $1, \ldots, n$. This basis can be replaced by an orthonormal basis in n steps. First replace v_{1} by $e_{1}=v_{1} /\left\|v_{1}\right\|$ where $\left\|v_{1}\right\| \neq 0$ by the linear indepedence of the basis. Then replace v_{2} by

$$
\begin{equation*}
e_{2}=w_{2} /\left\|w_{2}\right\|, w_{2}=v_{2}-\left\langle v_{2}, e_{1}\right\rangle e_{1} \tag{10.40}
\end{equation*}
$$

Here $w_{2} \perp e_{1}$ as follows by taking inner products; w_{2} cannot vanish since v_{2} and e_{1} must be linearly independent. Proceeding by finite induction we may assume that we have replaced $v_{1}, v_{2}, \ldots, v_{k}, k<n$, by $e_{1}, e_{2}, \ldots, e_{k}$ which are orthonormal and span the same subspace as the v_{i} 's $i=1, \ldots, k$. Then replace v_{k+1} by

$$
\begin{equation*}
e_{k+1}=w_{k+1} /\left\|w_{k+1}\right\|, w_{k+1}=v_{k+1}-\sum_{i=1}^{k}\left\langle v_{k+1}, e_{i}\right\rangle e_{i} \tag{10.41}
\end{equation*}
$$

By taking inner products, $w_{k+1} \perp e_{i}, i=1, \ldots, k$ and $w_{k+1} \neq 0$ by the linear independence of the v_{i} 's. Thus the orthonormal set has been increased by one element preserving the same properties and hence the basis can be orthonormalized.

Now, for each $u \in H$ set

$$
\begin{equation*}
c_{i}=\left\langle u, e_{i}\right\rangle \tag{10.42}
\end{equation*}
$$

It follows that $U=u-\sum_{i=1}^{n} c_{i} e_{i}$ is orthogonal to all the e_{i} since

$$
\begin{equation*}
\left\langle u, e_{j}\right\rangle=\left\langle u, e_{j}\right\rangle-\sum_{i} c_{i}\left\langle e_{i}, e_{j}\right\rangle=\left\langle u . e_{j}\right\rangle-c_{j}=0 \tag{10.43}
\end{equation*}
$$

This implies that $U=0$ since writing $U=\sum_{i} d_{i} e_{i}$ it follows that $d_{i}=\left\langle U, e_{i}\right\rangle=0$.
Now, consider the map (10.38). We have just shown that this map is injective, since $T u=0$ implies $c_{i}=0$ for all i and hence $u=0$. It is linear since the c_{i} depend linearly on u by the linearity of the inner product in the first variable. Moreover it is surjective, since for any $c_{i} \in \mathbb{C}, u=\sum_{i} c_{i} e_{i}$ reproduces the c_{i} through (10.42). Thus T is a linear isomorphism and the first identity in (10.39) follows by direct computation:-

$$
\begin{align*}
\sum_{i=1}^{n}(T u)_{i} \overline{(T v)_{i}} & =\sum_{i}\left\langle u, e_{i}\right\rangle \\
& =\left\langle u, \sum_{i}\left\langle v, e_{i}\right\rangle e_{i}\right\rangle \tag{10.44}\\
& =\langle u, v\rangle
\end{align*}
$$

Setting $u=v$ shows that $\|T u\|_{\mathbb{C}^{n}}=\|u\|_{H}$.
Now, we know that \mathbb{C}^{n} is complete with its standard norm. Since T is an isomorphism, it carries Cauchy sequences in H to Cauchy sequences in \mathbb{C}^{n} and T^{-1} carries convergent sequences in \mathbb{C}^{n} to convergent sequences in H, so every Cauchy sequence in H is convergent. Thus H is complete.

