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57 LECTURE NOTES FOR 18.102, SPRING 2009 

Lecture 9. Thursday, March 5 

My attempts to distract you all during the test did not seem to work very well. 
Here is what I wrote up on the board, more or less. We will use Baire’s theorem 
later (it is also known as ‘Baire category theory’ although it has nothing to do with 
categories in the modern sense). 

This is a theorem about complete metric spaces – it could be included in 18.100B 
but the main applications are in Functional Analysis. 

Theorem 4 (Baire). If M is a non-empty complete metric space and Cn ⊂ M, 
n ∈ N, are closed subsets such that 
 
(9.1)	 M = Cn 

n 

then at least one of the Cn’s has an interior point. 

Proof. We can assume that the first set C1 =� ∅ since they cannot all be empty and 
dropping some empty sets does no harm. Let’s assume the contrary of the desired 
conclusion, namely that each of the Cn’s has empty interior, hoping to arrive at 
a contradiction to (9.1) using the other properties. This means that an open ball 
B(p, �) around a point of M (so it isn’t empty) cannot be contained in any one of 
the Cn. 

So, choose p ∈ C1. Now, there must be a point p1 ∈ B(p, 1/3) which is not in 
C1. Since C1 is closed there exists �1 > 0, and we can take �1 < 1/3, such that 
B(p1, �1) ∩ C1 = ∅. Continue in this way, choose p2 ∈ B(p1, �1/3) which is not in 
C2 and �2 > 0, �2 < �1/3 such that B(p2, �2) ∩ C2 = ∅. Here we use both the fact 
that C2 has empty interior and the fact that it is closed. So, inductively there is a 
sequence pi, i = 1, . . . , k and positive numbers 0 < �k < �k−1/3 < �k−2/32 < <· · · 
�1/3k−1 < 3−k such that pj ∈ B(pj−1, �j−1/3) and B(pj , �j ) ∩ Cj = ∅. Then we can 
add another pk+1 by using the properties of Ck – it has non-empty interior so there is 
some point in B(pk, �k/3) which is not in Ck+1 and then B(pk+1, �k+1) ∩ Ck+1 = ∅
where �k+1 > 0 but �k+1 < �k/3. Thus, we have a sequence {pk} in M. Since 
d(pk+1, pk) < �k/3 this is a Cauchy sequence, in fact 

(9.2) d(pk, pk+l) < �k/3 + + �k+l−1/3 < 3−k .· · · 

Since M is complete the sequence converges to a limit, q ∈ M. Notice however that 
pl ∈ B(pk, 2�k/3) for all k > l so d(pk, q) ≤ 2�k/3 which implies that q /∈ Ck for 
any k. This is the desired contradiction to (9.1). 

Thus, at least one of the Cn must have non-empty interior.	 � 

One application of this, which we will get to later, is the uniform boundedness 
principle (which is just a theorem). 

Theorem 5. Let B be a Banach space and suppose that Tk is a sequence of bounded 
(i.e. continuous) linear operators Tn : B −→ V where V is a normed space. Suppose 
that for each b ∈ B the set {Tn(b)} ⊂ V is bounded (in norm of course) then 
supn �Tn� < ∞. 

Proof. You can look it up, but it follows from an application of Baire’s theorem to 
the sets 

(9.3) Sp = {b ∈ B, �b� < 1, �Tnb�V ≤ p ∀ n}, p ∈ N.. 
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You can check that these are closed and that their union must be the closed ball 
of radius one around the origin in B (because of the assumption of ‘pointwise 
boundedness’) So, by Baire’s theorem one of them has non-empty interior. This 
means that for some p, some v ∈ Sp and some δ > 0, 

(9.4) w ∈ B, �w�B ≤ δ =⇒ �Tn(v + w)�V ≤ p ∀ n. 
Using the triangle inequality, and the fact that �Tn(v)�V ≤ p this means 

(9.5) w ∈ B, �w�B ≤ δ =⇒ �Tn(w)�V ≤ 2p =⇒ �Tn� ≤ 2p/δ 

since the norm of the operator is sup{�Tw�V ; �w�B = 1� � 

Why this should be useful we shall see! 




