MIT OpenCourseWare
http://ocw.mit.edu

18.102 Introduction to Functional Analysis

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Solutions to Problem set 7

Problem 7.1 Question:- Is it possible to show the completeness of the Fourier basis

$$
\exp (i k x) / \sqrt{2 \pi}
$$

by computation? Maybe, see what you think. These questions are also intended to get you to say things clearly.
(1) Work out the Fourier coefficients $c_{k}(t)=\int_{(0,2 \pi)} f_{t} e^{-i k x}$ of the step function

$$
f_{t}(x)= \begin{cases}1 & 0 \leq x<t \tag{16.17}\\ 0 & t \leq x \leq 2 \pi\end{cases}
$$

for each fixed $t \in(0,2 \pi)$.
(2) Explain why this Fourier series converges to f_{t} in $L^{2}(0,2 \pi)$ if and only if

$$
\begin{equation*}
2 \sum_{k>0}\left|c_{k}(t)\right|^{2}=2 \pi t-t^{2}, t \in(0,2 \pi) \tag{16.18}
\end{equation*}
$$

(3) Write this condition out as a Fourier series and apply the argument again to show that the completeness of the Fourier basis implies identities for the sum of k^{-2} and k^{-4}.
(4) Can you explain how reversing the argument, that knowledge of the sums of these two series should imply the completeness of the Fourier basis? There is a serious subtlety in this argument, and you get full marks for spotting it, without going ahead a using it to prove completeness.
Problem 7.2 Prove that for appropriate constants d_{k}, the functions $d_{k} \sin (k x / 2)$, $k \in \mathbb{N}$, form an orthonormal basis for $L^{2}(0,2 \pi)$.

Hint: The usual method is to use the basic result from class plus translation and rescaling to show that $d_{k}^{\prime} \exp (i k x / 2) k \in \mathbb{Z}$ form an orthonormal basis of $L^{2}(-2 \pi, 2 \pi)$. Then extend functions as odd from $(0,2 \pi)$ to $(-2 \pi, 2 \pi)$.

Problem 7.3 Let $e_{k}, k \in \mathbb{N}$, be an orthonormal basis in a separable Hilbert space, H. Show that there is a uniquely defined bounded linear operator $S: H \longrightarrow H$, satisfying

$$
\begin{equation*}
S e_{j}=e_{j+1} \forall j \in \mathbb{N} \tag{16.19}
\end{equation*}
$$

Show that if $B: H \longrightarrow H$ is a bounded linear operator then $S+\epsilon B$ is not invertible if $\epsilon<\epsilon_{0}$ for some $\epsilon_{0}>0$.

Hint:- Consider the linear functional $L: H \longrightarrow \mathbb{C}, L u=\left(B u, e_{1}\right)$. Show that $B^{\prime} u=B u-(L u) e_{1}$ is a bounded linear operator from H to the Hilbert space $H_{1}=\left\{u \in H ;\left(u, e_{1}\right)=0\right\}$. Conclude that $S+\epsilon B^{\prime}$ is invertible as a linear map from H to H_{1} for small ϵ. Use this to argue that $S+\epsilon B$ cannot be an isomorphism from H to H by showing that either e_{1} is not in the range or else there is a non-trivial element in the null space.

Problem 7.4 Show that the product of bounded operators on a Hilbert space is strong continuous, in the sense that if A_{n} and B_{n} are strong convergent sequences of bounded operators on H with limits A and B then the product $A_{n} B_{n}$ is strongly convergent with limit $A B$.

Hint: Be careful! Use the result in class which was deduced from the Uniform Boundedness Theorem.

