MIT OpenCourseWare
http://ocw.mit.edu

18.102 Introduction to Functional Analysis

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

SOLUTIONS TO PROBLEM SET 4 FOR 18.102, SPRING 2009 WAS DUE 11AM TUESDAY 10 MAR.

RICHARD MELROSE

Just to compensate for last week, I will make this problem set too short and easy!

1. Problem 4.1

Let H be a normed space in which the norm satisfies the parallelogram law:

$$
\begin{equation*}
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right) \forall u, v \in H . \tag{1}
\end{equation*}
$$

Show that the norm comes from a positive definite sesquilinear (i.e. Hermitian) inner product. Big Hint:- Try

$$
\begin{equation*}
(u, v)=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}+i\|u+i v\|^{2}-i\|u-i v\|^{2}\right)! \tag{2}
\end{equation*}
$$

Solution: Setting $u=v$, even without the parallelogram law,

$$
\begin{equation*}
\left.(u, u)=\frac{1}{4}\|2 u\|^{2}+i\|(1+i) u\|^{2}-i\|(1-i) u\|^{2}\right)=\|u\|^{2} . \tag{3}
\end{equation*}
$$

So the point is that the parallelogram law shows that (u, v) is indeed an Hermitian inner product. Taking complex conjugates and using properties of the norm, $\| u+$ $i v\|=\| v-i u \|$ etc

$$
\begin{equation*}
\overline{(u, v)}=\frac{1}{4}\left(\|v+u\|^{2}-\|v-u\|^{2}-i\|v-i u\|^{2}+i\|v+i u\|^{2}\right)=(v, u) \tag{4}
\end{equation*}
$$

Thus we only need check the linearity in the first variable. This is a little tricky! First compute away. Directly from the identity $(u,-v)=-(u, v)$ so $(-u, v)=$ $-(u, v)$ using (4). Now,

$$
\begin{align*}
(2 u, v) & =\frac{1}{4}\left(\|u+(u+v)\|^{2}-\|u+(u-v)\|^{2}+i\|u+(u+i v)\|^{2}-i\|u+(u-i v)\|^{2}\right) \tag{5}\\
& =2 \frac{1}{4}\left(\|u+v\|^{2}+\|u\|^{2}-\|u-v\|^{2}-\|u\|^{2}+i\|(u+i v)\|^{2}+i\|u\|^{2}-i\|u-i v\|^{2}-i\|u\|^{2}\right)-\frac{1}{4}(\| u-(u \\
& =2(u, v) .
\end{align*}
$$

Using this and (4), for any u, u^{\prime} and v,

$$
\begin{equation*}
\left(u+u^{\prime}, v\right)=\frac{1}{2}\left(u+u^{\prime}, 2 v\right)=\frac{1}{2} \frac{1}{4}\left(\left\|(u+v)+\left(u^{\prime}+v\right)\right\|^{2}-\left\|(u-v)+\left(u^{\prime}-v\right)\right\|^{2}+i\|(u+i v)+(u-i v)\|^{2}-i \|(\right. \tag{6}
\end{equation*}
$$

Using the second identity to iterate the first it follows that $(k u, v)=k(u, v)$ for any u and v and any positive integer k. Then setting $n u^{\prime}=u$ for any other positive integer and $r=k / n$, it follows that

$$
\begin{equation*}
(r u, v)=\left(k u^{\prime}, v\right)=k\left(u^{\prime}, v\right)=r n\left(u^{\prime}, v\right)=r(u, v) \tag{7}
\end{equation*}
$$

where the identity is reversed. Thus it follows that $(r u, v)=r(u, v)$ for any rational r. Now, from the definition both sides are continuous in the first element, with respect to the norm, so we can pass to the limit as $r \rightarrow x$ in \mathbb{R}. Also directly from the definition,

$$
\begin{equation*}
(i u, v)=\frac{1}{4}\left(\|i u+v\|^{2}-\|i u-v\|^{2}+i\|i u+i v\|^{2}-i\|i u-i v\|^{2}\right)=i(u, v) \tag{8}
\end{equation*}
$$

so now full linearity in the first variable follows and that is all we need.

2. Problem 4.2

Let H be a finite dimensional (pre)Hilbert space. So, by definition H has a basis $\left\{v_{i}\right\}_{i=1}^{n}$, meaning that any element of H can be written

$$
\begin{equation*}
v=\sum_{i} c_{i} v_{i} \tag{1}
\end{equation*}
$$

and there is no dependence relation between the v_{i} 's - the presentation of $v=0$ in the form (1) is unique. Show that H has an orthonormal basis, $\left\{e_{i}\right\}_{i=1}^{n}$ satisfying $\left(e_{i}, e_{j}\right)=\delta_{i j}$ ($=1$ if $i=j$ and 0 otherwise). Check that for the orthonormal basis the coefficients in (1) are $c_{i}=\left(v, e_{i}\right)$ and that the map

$$
\begin{equation*}
T: H \ni v \longmapsto\left(\left(v, e_{i}\right)\right) \in \mathbb{C}^{n} \tag{2}
\end{equation*}
$$

is a linear isomorphism with the properties

$$
\begin{equation*}
(u, v)=\sum_{i}(T u)_{i} \overline{\overline{(T v)_{i}}},\|u\|_{H}=\|T u\|_{\mathbb{C}^{n}} \forall u, v \in H \tag{3}
\end{equation*}
$$

Why is a finite dimensional preHilbert space a Hilbert space?
Solution: Since H is assumed to be finite dimensional, it has a basis $v_{i}, i=$ $1, \ldots, n$. This basis can be replaced by an orthonormal basis in n steps. First replace v_{1} by $e_{1}=v_{1} /\left\|v_{1}\right\|$ where $\left\|v_{1}\right\| \neq 0$ by the linear indepedence of the basis. Then replace v_{2} by

$$
\begin{equation*}
e_{2}=w_{2} /\left\|w_{2}\right\|, w_{2}=v_{2}-\left\langle v_{2}, e_{1}\right\rangle e_{1} \tag{4}
\end{equation*}
$$

Here $w_{2} \perp e_{1}$ as follows by taking inner products; w_{2} cannot vanish since v_{2} and e_{1} must be linearly independent. Proceeding by finite induction we may assume that we have replaced $v_{1}, v_{2}, \ldots, v_{k}, k<n$, by $e_{1}, e_{2}, \ldots, e_{k}$ which are orthonormal and span the same subspace as the v_{i} 's $i=1, \ldots, k$. Then replace v_{k+1} by

$$
\begin{equation*}
e_{k+1}=w_{k+1} /\left\|w_{k+1}\right\|, w_{k+1}=v_{k+1}-\sum_{i=1}^{k}\left\langle v_{k+1}, e_{i}\right\rangle e_{i} \tag{5}
\end{equation*}
$$

By taking inner products, $w_{k+1} \perp e_{i}, i=1, \ldots, k$ and $w_{k+1} \neq 0$ by the linear independence of the v_{i} 's. Thus the orthonormal set has been increased by one element preserving the same properties and hence the basis can be orthonormalized.

Now, for each $u \in H$ set

$$
\begin{equation*}
c_{i}=\left\langle u, e_{i}\right\rangle \tag{6}
\end{equation*}
$$

It follows that $U=u-\sum_{i=1}^{n} c_{i} e_{i}$ is orthogonal to all the e_{i} since

$$
\begin{equation*}
\left\langle u, e_{j}\right\rangle=\left\langle u, e_{j}\right\rangle-\sum_{i} c_{i}\left\langle e_{i}, e_{j}\right\rangle=\left\langle u . e_{j}\right\rangle-c_{j}=0 \tag{7}
\end{equation*}
$$

This implies that $U=0$ since writing $U=\sum_{i} d_{i} e_{i}$ it follows that $d_{i}=\left\langle U, e_{i}\right\rangle=0$.
Now, consider the map (2). We have just shown that this map is injective, since $T u=0$ implies $c_{i}=0$ for all i and hence $u=0$. It is linear since the c_{i} depend linearly on u by the linearity of the inner product in the first variable. Moreover it is surjective, since for any $c_{i} \in \mathbb{C}, u=\sum_{i} c_{i} e_{i}$ reproduces the c_{i} through (6). Thus T is a linear isomorphism and the first identity in (3) follows by direct computation:-

$$
\begin{align*}
\sum_{i=1}^{n}(T u)_{i} \overline{(T v)_{i}} & =\sum_{i}\left\langle u, e_{i}\right\rangle \\
& =\left\langle u, \sum_{i}\left\langle v, e_{i}\right\rangle e_{i}\right\rangle \tag{8}\\
& =\langle u, v\rangle .
\end{align*}
$$

Setting $u=v$ shows that $\|T u\|_{\mathbb{C}^{n}}=\|u\|_{H}$.
Now, we know that \mathbb{C}^{n} is complete with its standard norm. Since T is an isomorphism, it carries Cauchy sequences in H to Cauchy sequences in \mathbb{C}^{n} and T^{-1} carries convergent sequences in \mathbb{C}^{n} to convergent sequences in H, so every Cauchy sequence in H is convergent. Thus H is complete.

