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Lecture 7

We continue our proof of the Inverse Function Theorem.

As before, we let U be an open set in Rn, and we assume that 0 ∈ U . We let


f : U → Rn be a C 1 map, and we assume f(0) = 0 and that Df(0) = I. We 
summarize what we have proved so far in the following theorem. 

Theorem 2.18. There exists a neighborhood U0 of 0 in U and a neighborhood V of 
0 in Rn such that 

1. f maps U0 bijectively onto V 

2. f−1 : V U0 is continuous, → 

3. f−1 is differentiable at 0. 

Now, we let U be an open set in Rn, and we let f : U → Rn be a C 2 map, as before, 
but we return to our original assumptions that a ∈ U , b = f(a), and Df(a) : Rn Rn →
is bijective. We prove the following theorem. 

Theorem 2.19. There exists a neighborhood U0 of a in U and a neighborhood V of 
b in Rn such that 

1. f maps U0 bijectively onto V 

2. f−1 : V U0 is continuous, → 

3. f−1 is differentiable at b. 

Proof. The map f : U → Rn maps a to b. Define U � = U − a = { x− a : x ∈ U} . Also 
define f1 : U

� → Rn by f1(x) = f(x + a)− b, so that f1(0) = 0 and Df1(0) = Df(a) 
(using the Chain Rule). 

Let A = Df(a) = Df1(0). We know that A is invertible. 
Now, define f2 : U

� Rn by f2 = A−1f1, so that f2(0) = 0 and Df2(0) = I.→
The results from last lecture show that the theorem at hand is true for f2. Because 
f1 = A f2, the theorem is also true for f1. Finally, because f(x) = f1(x− a)+ b, the ◦
theorem is true for f . 

So, we have a bijective map f : U0 → V . Let us take c ∈ U0 and look at the 
derivative � � 

∂fi
Df(c) ∼ 

∂xj 

(c) = Jf (c). (2.97) 

Note that � � 
∂fi

Df(c) is bijective ⇐⇒ det 
∂xj 

(c) = 0. (2.98) 

∂fiBecause f is C 1, the functions are continuous on U0. If det Jf (a) = 0, then 
∂xj 

det Jf (c) = 0 for c close to a. We can shrink U0 and V such that det Jf (c) = 0 for 
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all c ∈ U0, so for every c ∈ U0, the map f−1 is differentiable at f(c). That is, f−1 is 
differentiable at all points of V . 

We have thus improved the previous theorem. We can replace the third point 
with 

3. f−1 is differentiable at all points of V. (2.99) 

Let f−1 = g, so that g ◦ f = identity map. The Chain Rule is used to show the 
following. Suppose p ∈ U0 and q = f(p). Then Dg(q) = Df(p)−1, so Jg(q) = Jf (p)

−1 . 
That is, for all x ∈ V , 

∂gi ∂fi 
−1 

(x) = (g(x)) . (2.100) 
∂xj ∂xj 

∂fiThe function f is C1, so is continuous on U0. It also follows that g is continuous, 
∂xj


∂fi
so (g(x)) is continuous on V .
∂xj 

Using Cramer’s Rule, we conclude that the entries of matrix on the r.h.s. of 
∂fiEquation 2.100 are continuous functions on V . This shows that 
∂xj 

is continuous on 

V , which implies that g is a C1 map. 
We leave as an exercise to show that f ∈ Cr implies that g ∈ Cr for all r. The 

proof is by induction. 
This concludes the proof of the Inverse Function Theorem, signifying the end of 

this section of the course. 

3 Integration 

3.1 Riemann Integral of One Variable 

We now begin to study the next main topic of this course: integrals. We begin our 
discussion of integrals with an 18.100 level review of integrals. 

We begin by defining the Riemann integral (sometimes written in shorthand as 
the R. integral). 

Let [a, b] ⊆ R be a closed interval in R, and let P be a finite subset of [a, b]. Then 
P is a partition if a, b ∈ P and if all of the elements ti, . . . , tN in P can be arranged 
such that t1 = a < t2 < < tn = b. We define Ii = [ti, ti+1], which are called the · · · 
subintervals of [a, b] belonging to P . 

Let f : [a, b] R be a bounded function, and let Ii be a subinterval belonging to →
P . Then we define 

mi = inf f : Ii → R 
(3.1) 

Mi = sup f : Ii → R, 
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from which we define the lower and upper Riemann sums 

L(f, P ) = mi × (length of Ii) 
i� (3.2) 

U(f, P ) = Mi × (length of Ii), 
i 

respectively. 
Clearly, 

L(f, P ) ≤ U(f, P ). (3.3) 

Now, let P and P � be partitions. 

Definition 3.1. The partition P is a refinement of P if P � ⊃ P . 

If P � is a refinement of P , then 

L(f, P �) ≥ L(f, P ), and 
(3.4) 

U(f, P �) ≤ U(f, P ). 

If P and P � are any partitions, then you can take P �� = P ∪ P �, which is a refinement 
of both P and P �. So, 

L(f, P ) ≤ L(f, P ��) ≤ U(f, P ��) ≤ U(f, P �) (3.5) 

for any partitions P, P �. That is, the lower Riemann sum is always less than or equal 
to the upper Riemann sum, regardless of the partitions used. 

Now we can define the Lower and Upper Riemann integrals 

f = l.u.b. {L(f, P ) P a partition of [a, b]| }
[a,b]� (3.6) 

f = g.l.b. {U(f, P ) P a partition of [a, b]| }
[a,b] 

We can see from the above that � 
f. (3.7) f ≤ 

Claim. If f is continuous, then 

f = f. (3.8) 

Definition 3.2. For any bounded function f : [a, b] R, the function f is (Riemann) →
integrable if 

f = f. (3.9) 
[a,b] [a,b] 

In the next lecture we will begin to generalize these notions to multiple variables. 
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