Lecture 5

2.3 Chain Rule

Let U and v be open sets in \mathbb{R}^n . Consider maps $f : U \to V$ and $g : V \to \mathbb{R}^k$. Choose $a \in U$, and let b = f(a). The composition $g \circ f : U \to \mathbb{R}^k$ is defined by $(g \circ f)(x) = g(f(x))$.

Theorem 2.9. If f is differentiable at a and g is differentiable at b, then $g \circ f$ is differentiable at a, and the derivative is

$$(Dg \circ f)(a) = (Dg)(b) \circ Df(a).$$

$$(2.43)$$

Proof. This proof follows the proof in Munkres by breaking the proof into steps.

• Step 1: Let $h \in \mathbb{R}^n - \{0\}$ and $h \doteq 0$, by which we mean that h is very close to zero. Consider $\Delta(h) = f(a+h) - f(a)$, which is continuous, and define

$$F(h) = \frac{f(a+h) - f(a) - Df(a)h}{|a|}.$$
(2.44)

Then f is differentiable at a if and only if $F(h) \to 0$ as $h \to 0$.

$$F(h) = \frac{\Delta(h) - Df(a)h}{|h|}, \qquad (2.45)$$

 \mathbf{SO}

$$\Delta(h) = Df(a)h + |h|F(h). \qquad (2.46)$$

Lemma 2.10.

$$\frac{\Delta(h)}{|h|} \text{ is bounded.} \tag{2.47}$$

Proof. Define

$$|Df(a)| = \sup_{i} \left| \frac{\partial f}{\partial x_i}(a) \right|, \qquad (2.48)$$

and note that

$$\frac{\partial f}{\partial x_i}(a) = Df(a)e_i, \qquad (2.49)$$

where the e_i are the standard basis vectors of \mathbb{R}^n . If $h = (h_1, \ldots, h_n)$, then $h = \sum h_i e_i$. So, we can write

$$Df(a)h = \sum h_i Df(a)e_i = \sum h_i \frac{\partial f}{\partial x_i}(a).$$
 (2.50)

It follows that

$$|Df(a)h| \leq \sum_{i=1}^{m} h_i \left| \frac{\partial f}{\partial x_i}(a) \right|$$

$$\leq m|h||Df(a)|.$$
(2.51)

By Equation 2.46,

$$|\Delta(h)| \le m|h||Df(a)| + |h|F(h),$$
(2.52)

 \mathbf{SO}

$$\frac{|\Delta(h)|}{|h|} \le m|Df(a)| + F(h).$$

$$(2.53)$$

• Step 2: Remember that $b = f(a), g : V \to \mathbb{R}^k$, and $b \in V$. Let $k \doteq 0$. This means that $k \in \mathbb{R}^n - \{0\}$ and that k is close to zero. Define

$$G(k) = \frac{g(b+k) - g(b) - (Dg)(b)k}{|k|},$$
(2.54)

so that

$$g(b+k) - g(b) = Dg(b)k + |k|G(k).$$
(2.55)

We proceed to show that $g \circ f$ is differentiable at a.

$$g \circ f(a+h) - g \circ f(a) = g(f(a+h)) - g(f(a)) = g(b + \Delta(h)) - g(b),$$
(2.56)

where f(a) = b and $f(a+h) = f(a) + \Delta(h) = b + \Delta(h)$. Using Equation 2.55 we see that the above expression equals

$$Dg(b)\Delta(h) + |\Delta(h)|G(\Delta(h)).$$
(2.57)

Substituting in from Equation 2.46, we obtain

$$g \circ f(a+h) - g \circ f(a) = \dots$$

= $Dg(b)(Df(a)h + |h|F(h)) + \dots$
= $Dg(b) \circ Df(a)h + |h|Dg(b)F(h) + |\Delta(h)|G(\Delta(h))$
(2.58)

This shows that

$$\frac{g \circ f(a+h) - g \circ f(a) - Dg(b) \circ Df(a)h}{|h|} = Dg(b)F(h) + \frac{\Delta(h)}{|h|}G(\Delta(h)).$$
(2.59)

We see in the above equation that $g \circ f$ is differentiable at a if and only if the l.h.s. goes to zero as $h \to 0$. It suffices to show that the r.h.s. goes to zero as $h \to 0$, which it does: $F(h) \to 0$ as $h \to 0$ because f is differentiable at a; $G(\Delta(h)) \to 0$ because g is differentiable at b; and $\Delta(h)/|h|$ is bounded.

We consider the same maps g and f as above, and we write out f in component form as $f = (f_1, \ldots, f_n)$ where each $f_i : U \to \mathbb{R}$. We say that f is a \mathcal{C}^r map if each $f_i \in \mathcal{C}^r(U)$. We associate Df(x) with the matrix

$$Df(x) \sim \left[\frac{\partial f_i}{\partial x_j}(x)\right].$$
 (2.60)

By definition, f is \mathcal{C}^r (that is to say $f \in \mathcal{C}^r(U)$) if and only if Df is \mathcal{C}^{r-1} .

Theorem 2.11. If $f: U \to V \subseteq \mathbb{R}^n$ is a \mathcal{C}^r map and $g: V \to \mathbb{R}^p$ is a \mathcal{C}^r map, then $g \circ f: U \to \mathbb{R}^p$ is a \mathcal{C}^r map.

Proof. We only prove the case r = 1 and leave the general case, which is inductive, to the student.

• Case r = 1:

$$Dg \circ f(x) = Dg(f(x)) \circ Df(x) \sim \left[\frac{\partial g_i}{\partial x_j}f(x)\right].$$
 (2.61)

The map g is \mathcal{C}^1 , which implies that $\partial g_i / \partial x_i$ is continuous. Also,

$$Df(x) \sim \left[\frac{\partial f_i}{\partial x_j}\right]$$
 (2.62)

is continuous. It follows that $Dg \circ f(x)$ is continuous. Hence, $g \circ f$ is \mathcal{C}^1 .

2.4 The Mean-value Theorem in *n* Dimensions

Theorem 2.12. Let U be an open subset of \mathbb{R}^n and $f: U \to \mathbb{R}$ a \mathcal{C}^1 map. For $a \in U$, $h \in \mathbb{R}^n$, and $h \doteq 0$,

$$f(a+h) - f(a) = Df(c)h,$$
 (2.63)

where c is a point on the line segment $a + th, 0 \le t \le 1$, joining a to a + h.

Proof. Define a map $\phi : [0,1] \to \mathbb{R}$ by $\phi(t) = f(a+th)$. The Mean Value Theorem implies that $\phi(1) - \phi(0) = \phi'(c) = (Df)(c)h$, where 0 < c < 1. In the last step we used the chain rule.

2.5 Inverse Function Theorem

Let U and V be open sets in \mathbb{R}^n , and let $f : U \to V$ be a \mathcal{C}^1 map. Suppose there exists a map $g : V \to U$ that is the inverse map of f (which is also \mathcal{C}^1). That is, g(f(x)) = x, or equivalently $g \circ f$ equals the identity map.

Using the chain rule, if $a \in U$ and b = f(a), then

$$(Dg)(b) =$$
 the inverse of $Df(a)$. (2.64)

That is, $Dg(b) \circ Df(a)$ equals the identity map. So,

$$Dg(b) = (Df(a))^{-1}$$
 (2.65)

However, this is not a trivial matter, since we do not know if the inverse exists. That is what the inverse function theorem is for: if Df(a) is invertible, then g exists for some neighborhood of a in U and some neighborhood of f(a) in V. We state this more precisely in the following lecture.