Lecture 5

2.3 Chain Rule

Let U and v be open sets in \mathbb{R}^{n}. Consider maps $f: U \rightarrow V$ and $g: V \rightarrow \mathbb{R}^{k}$. Choose $a \in U$, and let $b=f(a)$. The composition $g \circ f: U \rightarrow \mathbb{R}^{k}$ is defined by $(g \circ f)(x)=g(f(x))$.

Theorem 2.9. If f is differentiable at a and g is differentiable at b, then $g \circ f$ is differentiable at a, and the derivative is

$$
\begin{equation*}
(D g \circ f)(a)=(D g)(b) \circ D f(a) . \tag{2.43}
\end{equation*}
$$

Proof. This proof follows the proof in Munkres by breaking the proof into steps.

- Step 1: Let $h \in \mathbb{R}^{n}-\{0\}$ and $h \dot{=} 0$, by which we mean that h is very close to zero. Consider $\Delta(h)=f(a+h)-f(a)$, which is continuous, and define

$$
\begin{equation*}
F(h)=\frac{f(a+h)-f(a)-D f(a) h}{|a|} . \tag{2.44}
\end{equation*}
$$

Then f is differentiable at a if and only if $F(h) \rightarrow 0$ as $h \rightarrow 0$.

$$
\begin{equation*}
F(h)=\frac{\Delta(h)-D f(a) h}{|h|}, \tag{2.45}
\end{equation*}
$$

so

$$
\begin{equation*}
\Delta(h)=D f(a) h+|h| F(h) . \tag{2.46}
\end{equation*}
$$

Lemma 2.10.

$$
\begin{equation*}
\frac{\Delta(h)}{|h|} \text { is bounded. } \tag{2.47}
\end{equation*}
$$

Proof. Define

$$
\begin{equation*}
|D f(a)|=\sup _{i}\left|\frac{\partial f}{\partial x_{i}}(a)\right|, \tag{2.48}
\end{equation*}
$$

and note that

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}}(a)=D f(a) e_{i}, \tag{2.49}
\end{equation*}
$$

where the e_{i} are the standard basis vectors of \mathbb{R}^{n}. If $h=\left(h_{1}, \ldots, h_{n}\right)$, then $h=\sum h_{i} e_{i}$. So, we can write

$$
\begin{equation*}
D f(a) h=\sum h_{i} D f(a) e_{i}=\sum h_{i} \frac{\partial f}{\partial x_{i}}(a) . \tag{2.50}
\end{equation*}
$$

It follows that

$$
\begin{align*}
|D f(a) h| & \leq \sum_{i=1}^{m} h_{i}\left|\frac{\partial f}{\partial x_{i}}(a)\right| \tag{2.51}\\
& \leq m|h||D f(a)|
\end{align*}
$$

By Equation 2.46,

$$
\begin{equation*}
|\Delta(h)| \leq m|h||D f(a)|+|h| F(h), \tag{2.52}
\end{equation*}
$$

so

$$
\begin{equation*}
\frac{|\Delta(h)|}{|h|} \leq m|D f(a)|+F(h) . \tag{2.53}
\end{equation*}
$$

- Step 2: Remember that $b=f(a), g: V \rightarrow \mathbb{R}^{k}$, and $b \in V$. Let $k \dot{=} 0$. This means that $k \in \mathbb{R}^{n}-\{0\}$ and that k is close to zero. Define

$$
\begin{equation*}
G(k)=\frac{g(b+k)-g(b)-(D g)(b) k}{|k|}, \tag{2.54}
\end{equation*}
$$

so that

$$
\begin{equation*}
g(b+k)-g(b)=D g(b) k+|k| G(k) . \tag{2.55}
\end{equation*}
$$

We proceed to show that $g \circ f$ is differentiable at a.

$$
\begin{align*}
g \circ f(a+h)-g \circ f(a) & =g(f(a+h))-g(f(a)) \tag{2.56}\\
& =g(b+\Delta(h))-g(b),
\end{align*}
$$

where $f(a)=b$ and $f(a+h)=f(a)+\Delta(h)=b+\Delta(h)$. Using Equation 2.55 we see that the above expression equals

$$
\begin{equation*}
D g(b) \Delta(h)+|\Delta(h)| G(\Delta(h)) . \tag{2.57}
\end{equation*}
$$

Substituting in from Equation 2.46, we obtain

$$
\begin{align*}
g \circ f(a+h)-g \circ f(a) & =\ldots \\
& =D g(b)(D f(a) h+|h| F(h))+\ldots \\
& =D g(b) \circ D f(a) h+|h| D g(b) F(h)+|\Delta(h)| G(\Delta(h)) \tag{2.58}
\end{align*}
$$

This shows that

$$
\begin{equation*}
\frac{g \circ f(a+h)-g \circ f(a)-D g(b) \circ D f(a) h}{|h|}=D g(b) F(h)+\frac{\Delta(h)}{|h|} G(\Delta(h)) . \tag{2.59}
\end{equation*}
$$

We see in the above equation that $g \circ f$ is differentiable at a if and only if the l.h.s. goes to zero as $h \rightarrow 0$. It suffices to show that the r.h.s. goes to zero as $h \rightarrow 0$, which it does: $F(h) \rightarrow 0$ as $h \rightarrow 0$ because f is differentiable at a; $G(\Delta(h)) \rightarrow 0$ because g is differentiable at b; and $\Delta(h) /|h|$ is bounded.

We consider the same maps g and f as above, and we write out f in component form as $f=\left(f_{1}, \ldots, f_{n}\right)$ where each $f_{i}: U \rightarrow \mathbb{R}$. We say that f is a \mathcal{C}^{r} map if each $f_{i} \in \mathcal{C}^{r}(U)$. We associate $D f(x)$ with the matrix

$$
\begin{equation*}
D f(x) \sim\left[\frac{\partial f_{i}}{\partial x_{j}}(x)\right] . \tag{2.60}
\end{equation*}
$$

By definition, f is \mathcal{C}^{r} (that is to say $f \in \mathcal{C}^{r}(U)$) if and only if $D f$ is \mathcal{C}^{r-1}.
Theorem 2.11. If $f: U \rightarrow V \subseteq \mathbb{R}^{n}$ is a \mathcal{C}^{r} map and $g: V \rightarrow \mathbb{R}^{p}$ is a \mathcal{C}^{r} map, then $g \circ f: U \rightarrow \mathbb{R}^{p}$ is a \mathcal{C}^{r} map.

Proof. We only prove the case $r=1$ and leave the general case, which is inductive, to the student.

- Case $r=1$:

$$
\begin{equation*}
D g \circ f(x)=D g(f(x)) \circ D f(x) \sim\left[\frac{\partial g_{i}}{\partial x_{j}} f(x)\right] \tag{2.61}
\end{equation*}
$$

The map g is \mathcal{C}^{1}, which implies that $\partial g_{i} / \partial x_{j}$ is continuous. Also,

$$
\begin{equation*}
D f(x) \sim\left[\frac{\partial f_{i}}{\partial x_{j}}\right] \tag{2.62}
\end{equation*}
$$

is continuous. It follows that $D g \circ f(x)$ is continuous. Hence, $g \circ f$ is \mathcal{C}^{1}.

2.4 The Mean-value Theorem in n Dimensions

Theorem 2.12. Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}$ a \mathcal{C}^{1} map. For $a \in U$, $h \in \mathbb{R}^{n}$, and $h \doteq 0$,

$$
\begin{equation*}
f(a+h)-f(a)=D f(c) h, \tag{2.63}
\end{equation*}
$$

where c is a point on the line segment $a+t h, 0 \leq t \leq 1$, joining a to $a+h$.
Proof. Define a map $\phi:[0,1] \rightarrow \mathbb{R}$ by $\phi(t)=f(a+t h)$. The Mean Value Theorem implies that $\phi(1)-\phi(0)=\phi^{\prime}(c)=(D f)(c) h$, where $0<c<1$. In the last step we used the chain rule.

2.5 Inverse Function Theorem

Let U and V be open sets in \mathbb{R}^{n}, and let $f: U \rightarrow V$ be a \mathcal{C}^{1} map. Suppose there exists a map $g: V \rightarrow U$ that is the inverse map of f (which is also \mathcal{C}^{1}). That is, $g(f(x))=x$, or equivalently $g \circ f$ equals the identity map.

Using the chain rule, if $a \in U$ and $b=f(a)$, then

$$
\begin{equation*}
(D g)(b)=\text { the inverse of } D f(a) \tag{2.64}
\end{equation*}
$$

That is, $D g(b) \circ D f(a)$ equals the identity map. So,

$$
\begin{equation*}
D g(b)=(D f(a))^{-1} \tag{2.65}
\end{equation*}
$$

However, this is not a trivial matter, since we do not know if the inverse exists. That is what the inverse function theorem is for: if $D f(a)$ is invertible, then g exists for some neighborhood of a in U and some neighborhood of $f(a)$ in V. We state this more precisely in the following lecture.

