Lecture 37

6.10 Integration on Smooth Domains

Let X be an oriented n-dimensional manifold, and let $\omega \in \Omega_{c}^{n}(X)$. We defined the integral

$$
\begin{equation*}
\int_{X} \omega \tag{6.136}
\end{equation*}
$$

but we can generalize the integral

$$
\begin{equation*}
\int_{D} \omega \tag{6.137}
\end{equation*}
$$

for some subsets $D \subseteq X$. We generalize, but only to very simple subsets called smooth domains (essentially manifolds-with-boundary). The prototypical smooth domain is the half plane:

$$
\begin{equation*}
\mathbb{H}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1} \leq 0\right\} \tag{6.138}
\end{equation*}
$$

Note that the boundary of the half plane is

$$
\begin{equation*}
\operatorname{Bd}\left(\mathbb{H}^{n}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}=0\right\} \tag{6.139}
\end{equation*}
$$

Definition 6.43. A closed subset $D \subseteq X$ is a smooth domain if for every point $p \in \operatorname{Bd}(D)$, there exists a parameterization $\phi: U \rightarrow V$ of X at p such that $\phi(U \cap$ $\left.\mathbb{H}^{n}\right)=V \cap D$.

Definition 6.44. The map ϕ is a parameterization of D at p.
Note that $\phi: U \cap \mathbb{H}^{n} \rightarrow V \cap D$ is a homeomorphism, so it maps boundary points to boundary points. So, it maps $U^{b}=U \cap \operatorname{Bd}\left(\mathbb{H}^{n}\right)$ onto $V^{b}=V \cap \operatorname{Bd}(D)$.

Let $\psi=\phi \mid U^{b}$. Then $\psi: U^{b} \rightarrow V^{b}$ is a diffeomorphism. The set U^{b} is an open set in \mathbb{R}^{n-1}, and ψ is a parameterization of the $\operatorname{Bd}(D)$ at p. We conclude that

$$
\begin{equation*}
\mathrm{Bd}(D) \text { is an }(n-1) \text {-dimensional manifold. } \tag{6.140}
\end{equation*}
$$

Here are some examples of how smooth domains appear in nature:
Let $f: X \rightarrow \mathbb{R}$ be a \mathcal{C}^{∞} map, and assume that $f^{-1}(0) \cap C_{f}=\phi$ (the empty set). That is, for all $p \in f^{-1}(0), d f_{p} \neq 0$.

Claim. The set $D=\{x \in X: f(x) \leq 0\}$ is a smooth domain.
Proof. Take $p \in \operatorname{Bd}(D)$, so $p=f^{-1}(0)$. Let $\phi: U \rightarrow V$ be a parameterization of X at p. Consider the map $g=f \circ \phi: U \rightarrow \mathbb{R}$. Let $q \in U$ and $p=\phi(q)$. Then

$$
\begin{equation*}
\left(d g_{q}\right)=d f_{p} \circ(d \phi)_{q} . \tag{6.141}
\end{equation*}
$$

We conclude that $d g_{q} \neq 0$.

By the canonical submersion theorem, there exists a diffeomorphism ψ such that $g \circ \psi=\pi$, where π is the canonical submersion mapping $\left(x, \ldots, x_{n}\right) \rightarrow x_{1}$. We can write simply $g \circ \psi=x_{1}$. Replacing $\phi=\phi_{\text {old }}$ by $\phi=\phi_{\text {new }}=\phi_{\text {old }} \circ \psi$, we get the new map $\phi: U \rightarrow V$ which is a parameterization of X at p with the property that $f \circ \phi\left(x_{1}, \ldots, x_{n}\right)=x_{1}$. Thus, ϕ maps $\mathbb{H}^{n} \cap U$ onto $D \cap V$.

We give an example of using the above claim to construct a smooth domain. Let $X=\mathbb{R}^{n}$, and define

$$
\begin{equation*}
f(x)=1-\left(x_{1}^{2}+\cdots+x_{n}^{2}\right) . \tag{6.142}
\end{equation*}
$$

By definition,

$$
\begin{equation*}
f(x) \leq 0 \Longleftrightarrow x \in B^{n} \tag{6.143}
\end{equation*}
$$

where $B^{n}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$ is the "unit ball." So, the unit ball B^{n} is a smooth domain.

We now define orientations of smooth domains. Assume that X is oriented, and let D be a smooth domain. Let $\phi: U \rightarrow V$ be a parameterization of D at p.

Definition 6.45. The map ϕ is an oriented parameterization of D if it is an oriented parameterization of X.

Assume that $\operatorname{dim} X=n>1$. We show that you can always find an oriented parameterization.

Let $\phi: U \rightarrow V$ be a parameterization of D at p. Suppose that ϕ is not oriented. That is, as a diffeomorphism ϕ is orientation reversing. Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the map

$$
\begin{equation*}
A\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n-1},-x_{n}\right) \tag{6.144}
\end{equation*}
$$

Then A maps $\mathbb{H}^{n} \rightarrow \mathbb{H}^{n}$, and $\phi \circ A$ is orientation preserving. So, $\phi \circ A$ is an oriented parameterization of D at p.

Now, let $\phi: U \rightarrow V$ be an oriented parameterization of D at p. We define

$$
\begin{align*}
U^{b} & =U \cap \operatorname{Bd}\left(\mathbb{H}^{n}\right), \tag{6.145}\\
V^{b} & =V \cap \operatorname{Bd}(D), \tag{6.146}\\
\psi & =\phi \mid U^{b}, \tag{6.147}
\end{align*}
$$

where ψ is a parameterization of $\operatorname{Bd}(D)$ at p.
We oriented $\operatorname{Bd}(D)$ at p by requiring ψ to be an oriented parameterization. We need to check the following claim.

Claim. The definition of oriented does not depend on the choice of parameterization. Proof. Let $\phi_{i}: U_{i} \rightarrow V_{i}, i=1,2$, be oriented parameterizations of D at p. Define

$$
\begin{align*}
& U_{1,2}=\phi_{1}^{-1}\left(V_{1} \cap V_{2}\right), \tag{6.148}\\
& U_{2,1}=\phi_{2}^{-1}\left(V_{1} \cap V_{2}\right), \tag{6.149}
\end{align*}
$$

from which we obtain the following diagram:

which defines a map g. By the properties of the other maps ϕ_{1}, ϕ_{2}, the map g is an orientation preserving diffeomorphism of $U_{1,2}$ onto $U_{2,1}$. Moreover, g maps

$$
\begin{equation*}
U_{1,2}^{b}=\operatorname{Bd}\left(\mathbb{H}^{n}\right) \cap U_{1,2} \tag{6.151}
\end{equation*}
$$

onto

$$
\begin{equation*}
U_{2,1}^{b}=\operatorname{Bd}\left(\mathbb{H}^{n}\right) \cap U_{2,1} . \tag{6.152}
\end{equation*}
$$

Let $h=g \mid U_{1,2}^{b}$, so $h: U_{1,2}^{b} \rightarrow U_{2,1}^{b}$. We want to show that h is orientation preserving. To show this, we write g and h in terms of coordinates.

$$
\begin{equation*}
g=\left(g_{1}, \ldots, g_{n}\right), \quad \text { where } g_{i}=g_{i}\left(x_{1}, \ldots, x_{n}\right) \tag{6.153}
\end{equation*}
$$

So,

$$
g \text { maps } \mathbb{H}^{n} \text { to } \mathbb{H}^{n} \Longleftrightarrow \begin{cases}g_{1}\left(x_{1}, \ldots, x_{n}\right)<0 & \text { if } x_{1}<0 \tag{6.154}\\ g_{1}\left(x_{1}, \ldots, x_{n}\right)>0 & \text { if } x_{1}>0 \\ g_{1}\left(0, x_{2}, \ldots, x_{n}\right)=0 & \end{cases}
$$

These conditions imply that

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial x_{1}} g_{1}\left(0, x_{2}, \ldots, x_{n}\right) \geq 0 \tag{6.155}\\
\frac{\partial}{\partial x_{i}} g_{1}\left(0, x_{2}, \ldots, x_{n}\right)=0, \text { for } i \neq 1
\end{array}\right.
$$

The map h in coordinates is then

$$
\begin{align*}
h & =h\left(x_{2}, \ldots, x_{n}\right) \tag{6.156}\\
& =\left(g\left(0, x_{2}, \ldots, x_{n}\right), \ldots, g_{n-1}\left(0, x_{2}, \ldots, x_{n}\right)\right),
\end{align*}
$$

which is the statement that $h=g \mid \operatorname{Bd}\left(\mathbb{H}^{n}\right)$.
At the point $\left(0, x_{2}, \ldots, x_{n}\right) \in U_{1,2}^{b}$,

$$
D g=\left[\begin{array}{cccc}
\frac{\partial g_{1}}{\partial x_{1}} & 0 & \cdots & 0 \tag{6.157}\\
* & & & \\
\vdots & & D h & \\
* & & &
\end{array}\right]
$$

The matrix $D g$ is an $n \times n$ block matrix containing the $(n-1) \times(n-1)$ matrix $D h$, because

$$
\begin{equation*}
\frac{\partial h_{i}}{\partial x_{j}}=\frac{\partial g_{i}}{\partial x_{j}}\left(0, x_{2}, \ldots, x_{n}\right), i, j>1 \tag{6.158}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\operatorname{det}(D g)=\frac{\partial g_{1}}{\partial x_{1}} \operatorname{det}(D h) \tag{6.159}
\end{equation*}
$$

We know that the l.h.s >0 and that $\frac{\partial g_{1}}{\partial x_{1}}>0$, so $\operatorname{det}(D h)>0$. Thus, the map $h: U_{1,2}^{b} \rightarrow U_{2,1}^{b}$ is orientation preserving.

To repeat, we showed that in the following diagram, the map h is orientation preserving:

We conclude that ψ_{1} is orientation preserving if and only if ψ_{2} is orientation preserving.

