Lecture 34

6.6 Orientation of Manifolds

Let X be an n-dimensional manifold in \mathbb{R}^{N}. Assume that X is a closed subset of \mathbb{R}^{N}. Let $f: X \rightarrow \mathbb{R}$ be a \mathcal{C}^{∞} map.

Definition 6.21. We remind you that the support of f is defined to be

$$
\begin{equation*}
\operatorname{supp} f=\overline{\{x \in X: f(x) \neq 0\}} \tag{6.69}
\end{equation*}
$$

Since X is closed, we don't have to worry about whether we are taking the closure in X or in \mathbb{R}^{n}.

Note that

$$
\begin{equation*}
f \in \mathcal{C}_{0}^{\infty}(X) \Longleftrightarrow \operatorname{supp} f \text { is compact. } \tag{6.70}
\end{equation*}
$$

Let $\omega \in \Omega^{k}(X)$. Then

$$
\begin{equation*}
\operatorname{supp} \omega=\overline{\left\{p \in X: \omega_{p} \neq 0\right\}} \tag{6.71}
\end{equation*}
$$

We use the notation

$$
\begin{equation*}
\omega \in \Omega_{c}^{k}(X) \Longleftrightarrow \operatorname{supp} \omega \text { is compact. } \tag{6.72}
\end{equation*}
$$

We will be using partitions of unity, so we remind you of the definition:
Definition 6.22. A collection of functions $\left\{\rho_{i} \in \mathcal{C}_{0}^{\infty}(X): i=1,2,3, \ldots\right\}$ is a partition of unity if

1. $0 \leq \rho_{i}$,
2. For every compact set $A \subseteq X$, there exists $N>0$ such that $\operatorname{supp} \rho_{i} \cap A=\phi$ for all $i>N$,
3. $\sum \rho_{i}=1$.

Suppose the collection of $\operatorname{sets} \mathcal{U}=\left\{U_{\alpha}: \alpha \in I\right\}$ is a covering of X by open subsets U_{α} of X.

Definition 6.23. The partition of unity $\rho_{i}, i=1,2,3, \ldots$, is subordinate to \mathcal{U} if for every i, there exists $\alpha \in I$ such that supp $\rho_{i} \subseteq U_{\alpha}$.

Claim. Given a collection of sets $\mathcal{U}=\left\{U_{\alpha}: \alpha \in I\right\}$, there exists a partition of unity subordinate to \mathcal{U}.

Proof. For each $\alpha \in I$, let \tilde{U}_{α} be an open set in \mathbb{R}^{N} such that $U_{\alpha}=\tilde{U}_{\alpha} \cap X$. We define the collection of sets $\tilde{\mathcal{U}}=\left\{\tilde{U}_{\alpha}: \alpha \in I\right\}$. Let

$$
\begin{equation*}
\tilde{U}=\bigcup \tilde{U}_{\alpha} \tag{6.73}
\end{equation*}
$$

From our study of Euclidean space, we know that there exists a partition of unity $\tilde{\rho}_{i} \in \mathcal{C}_{0}^{\infty}(\tilde{U}), i=1,2,3, \ldots$, subordinate to $\tilde{\mathcal{U}}$. Let $\iota_{X}: X \rightarrow \tilde{\mathcal{U}}$ be the inclusion map. Then

$$
\begin{equation*}
\rho_{i}=\tilde{\rho}_{i} \circ \iota_{X}=\iota_{X}^{*} \tilde{\rho}_{i}, \tag{6.74}
\end{equation*}
$$

which you should check.
We review orientations in Euclidean space before generalizing to manifolds. For a more comprehensive review, read section 7 of the Multi-linear Algebra notes.

Suppose \mathbb{L} is a one-dimensional vector space and that $v \in \mathbb{L}-\{0\}$. The set $\mathbb{L}-\{0\}$ has two components:

$$
\begin{equation*}
\{\lambda v: \lambda>0\} \text { and }\{\lambda v: \lambda<0\} . \tag{6.75}
\end{equation*}
$$

Definition 6.24. An orientation of \mathbb{L} is a choice of one of these components.
Notation. We call the preferred component \mathbb{L}_{+}(the positive component). We call the other component \mathbb{L}_{-}(the negative component).

We define a vector v to be positively oriented if $v \in \mathbb{L}_{+}$.
Now, let V be an n-dimensional vector space.
Definition 6.25. An orientation of V is an orientation of the one-dimensional vector space $\Lambda^{n}\left(V^{*}\right)$. That is, an orientation of V is a choice of $\Lambda^{n}\left(V^{*}\right)_{+}$.

Suppose that V_{1}, V_{2} are oriented n-dimensional vector spaces, and let $A: V_{1} \rightarrow V_{2}$ be a bijective linear map.

Definition 6.26. The map A is orientation preserving if

$$
\begin{equation*}
\omega \in \Lambda^{n}\left(V_{2}\right)_{+} \Longrightarrow A^{*} \omega \in \Lambda^{n}\left(V_{1}\right)_{+} . \tag{6.76}
\end{equation*}
$$

Suppose that V_{3} is also an oriented n-dimensional vector space, and let $B: V_{2} \rightarrow V_{3}$ be a bijective linear map. If A and B are orientation preserving, then $B A$ is also orientation preserving.

Finally, let us generalize the notion of orientation to orientations of manifolds. Let $X \subseteq \mathbb{R}^{N}$ be an n-dimensional manifold.

Definition 6.27. An orientation of X is a function on X which assigns to each point $p \in X$ an orientation of $T_{p} X$.

We give two examples of orientations of a manifold:
Example 1: Let $\omega \in \Lambda^{n}(X)$, and suppose that ω is nowhere vanishing. Orient X by assigning to $p \in X$ the orientation of $T_{p} X$ for which $\omega_{p} \in \Lambda^{n}\left(T_{p}^{*} X\right)_{+}$.

Example 2: Take $X=U$, an open subset of \mathbb{R}^{n}, and let

$$
\begin{equation*}
\omega=d x_{1} \wedge \cdots \wedge d x_{n} \tag{6.77}
\end{equation*}
$$

Define an orientation as in the first example. This orientation is called the standard orientation of U.

Definition 6.28. An orientation of X is a \mathcal{C}^{∞} orientation if for every point $p \in X$, there exists a neighborhood U of p in X and an n-form $\omega \in \Omega^{n}(U)$ such that for all points $q \in U, \omega_{q} \in \Lambda^{n}\left(T_{q}^{*} X\right)_{+}$.

From now on, we will only consider \mathcal{C}^{∞} orientations.
Theorem 6.29. If X is oriented, then there exists $\omega \in \Omega^{n}(X)$ such that for all $p \in X, \omega_{p} \in \Lambda^{n}\left(T_{p}^{*} X\right)_{+}$.

Proof. For every point $p \in X$, there exists a neighborhood U_{p} of p and an n - form $\omega^{(p)} \in \Omega^{n}\left(U_{p}\right)$ such that for all $q \in U_{p},\left(\omega^{(p)}\right)_{q} \in \Lambda^{n}\left(T_{Q}^{*} X\right)_{+}$.

Take $\rho_{i}, i=1,2, \ldots$, a partition of unity subordinate to $\mathcal{U}=\left\{U_{p}: p \in X\right\}$. For every i, there exists a point p such that $\rho_{i} \in \mathcal{C}_{0}^{\infty}\left(U_{p}\right)$. Let

$$
\omega_{i}= \begin{cases}\rho_{i} \omega^{(p)} & \text { on } U_{p} \tag{6.78}\\ 0 & \text { on the } X-U_{p}\end{cases}
$$

Since the ρ_{i} 's are compactly supported, ω_{i} is a \mathcal{C}^{∞} map. Let

$$
\begin{equation*}
\omega=\sum \omega_{i} . \tag{6.79}
\end{equation*}
$$

One can check that ω is positively oriented at every point.
Definition 6.30. An n-form $\omega \in \Omega^{n}(X)$ with the property hypothesized in the above theorem is called a volume form.

Remark. If ω_{1}, ω_{2} are volume forms, then we can write $\omega_{2}=f \omega_{1}$, for some $f \in$ $\mathcal{C}^{\infty}(X)$ (where $f \neq 0$ everywhere). In general, $f(p)>0$ because $\left(\omega_{1}\right)_{p},\left(\omega_{2}\right)_{p} \in$ $\Lambda^{n}\left(T_{p}^{*} X\right)_{+}$. So, if ω_{1}, ω_{2} are volume forms, then $\omega_{2}=f \omega_{1}$, for some $f \in \mathcal{C}^{\infty}(X)$ such that $f>0$.

Remark. Problem \#6 on the homework asks you to show that if X is orientable and connected, then there are exactly two ways to orient it. This is easily proved using the above Remark.

Suppose that $X \subseteq \mathbb{R}^{n}$ is a one-dimensional manifold (a "curve"). Then $T_{p} X$ is one-dimensional. We can find vectors $v,-v \in T_{p} X$ such that $\|v\|=1$. An orientation of X is just a choice of v or $-v$.

Now, suppose that X is an $(n-1)$-dimensional manifold in \mathbb{R}^{n}. Define

$$
\begin{equation*}
N_{p} X=\left\{v \in T_{p} \mathbb{R}^{n}: v \perp w \text { for all } w \in T_{p} X\right\} . \tag{6.80}
\end{equation*}
$$

Then $\operatorname{dim} N_{p} X=1$, so you can find $v,-v \in N_{p} X$ such that $\|v\|=1$. By Exercise \#5 in section 4 of the Multi-linear Algebra Notes, an orientation of $T_{p} X$ is just a choice of v or $-v$.

Suppose X_{1}, X_{2} are oriented n-dimensional manifolds, and let $f: X_{1} \rightarrow X_{2}$ be a diffeomorphism.

Definition 6.31. The map f is orientation preserving if for every $p \in X_{1}$,

$$
\begin{equation*}
d f_{p}: T_{p} X_{1} \rightarrow T_{q} X_{2} \tag{6.81}
\end{equation*}
$$

is orientation preserving, where $q=f(p)$.
Remark. Let ω_{2} be a volume form on X_{2}. Then f is orientation preserving if and only if $f^{*} \omega_{2}=\omega_{1}$ is a volume form on X_{1}.

We look at an example of what it means for a map to be orientation preserving. Let U, V be open sets on \mathbb{R}^{n} with the standard orientation. Let $f: U \rightarrow V$ be a diffeomorphism. So, by definition, the form

$$
\begin{equation*}
d x_{1} \wedge \cdots \wedge d x_{n} \tag{6.82}
\end{equation*}
$$

is a volume form of V. The form

$$
\begin{equation*}
f^{*} d x_{1} \wedge \cdots \wedge d x_{n}=\operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{j}}\right] d x_{1} \wedge \cdots \wedge d x_{n} \tag{6.83}
\end{equation*}
$$

is a volume form of U if and only if

$$
\begin{equation*}
\operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{j}}\right]>0 \tag{6.84}
\end{equation*}
$$

that is, if and only if f is orientation preserving in our old sense.
Now that we have studied orientations of manifolds, we have all of the ingredients we need to study integration theory for manifolds.

