Lecture 34

6.6 Orientation of Manifolds

Let X be an n-dimensional manifold in \mathbb{R}^N . Assume that X is a closed subset of \mathbb{R}^N . Let $f: X \to \mathbb{R}$ be a \mathcal{C}^{∞} map.

Definition 6.21. We remind you that the support of f is defined to be

supp
$$f = \overline{\{x \in X : f(x) \neq 0\}}.$$
 (6.69)

Since X is closed, we don't have to worry about whether we are taking the closure in X or in \mathbb{R}^n .

Note that

$$f \in \mathcal{C}_0^{\infty}(X) \iff \text{supp } f \text{ is compact.}$$
 (6.70)

Let $\omega \in \Omega^k(X)$. Then

$$\operatorname{supp}\,\omega = \overline{\{p \in X : \omega_p \neq 0\}}.\tag{6.71}$$

We use the notation

$$\omega \in \Omega_c^k(X) \iff \text{supp } \omega \text{ is compact.}$$
 (6.72)

We will be using partitions of unity, so we remind you of the definition:

Definition 6.22. A collection of functions $\{\rho_i \in \mathcal{C}_0^{\infty}(X) : i = 1, 2, 3, ...\}$ is a *partition* of unity if

- 1. $0 \le \rho_i$,
- 2. For every compact set $A \subseteq X$, there exists N > 0 such that supp $\rho_i \cap A = \phi$ for all i > N,
- 3. $\sum \rho_i = 1.$

Suppose the collection of sets $\mathcal{U} = \{U_{\alpha} : \alpha \in I\}$ is a covering of X by open subsets U_{α} of X.

Definition 6.23. The partition of unity ρ_i , i = 1, 2, 3, ..., is subordinate to \mathcal{U} if for every *i*, there exists $\alpha \in I$ such that supp $\rho_i \subseteq U_\alpha$.

Claim. Given a collection of sets $\mathcal{U} = \{U_{\alpha} : \alpha \in I\}$, there exists a partition of unity subordinate to \mathcal{U} .

Proof. For each $\alpha \in I$, let \tilde{U}_{α} be an open set in \mathbb{R}^N such that $U_{\alpha} = \tilde{U}_{\alpha} \cap X$. We define the collection of sets $\tilde{\mathcal{U}} = \{\tilde{U}_{\alpha} : \alpha \in I\}$. Let

$$\tilde{U} = \bigcup \tilde{U}_{\alpha}.$$
(6.73)

From our study of Euclidean space, we know that there exists a partition of unity $\tilde{\rho}_i \in \mathcal{C}_0^{\infty}(\tilde{U}), \ i = 1, 2, 3, \ldots$, subordinate to $\tilde{\mathcal{U}}$. Let $\iota_X : X \to \tilde{\mathcal{U}}$ be the inclusion map. Then

$$\rho_i = \tilde{\rho}_i \circ \iota_X = \iota_X^* \tilde{\rho}_i, \tag{6.74}$$

which you should check.

We review orientations in Euclidean space before generalizing to manifolds. For a more comprehensive review, read section 7 of the Multi-linear Algebra notes.

Suppose \mathbb{L} is a one-dimensional vector space and that $v \in \mathbb{L} - \{0\}$. The set $\mathbb{L} - \{0\}$ has two components:

$$\{\lambda v : \lambda > 0\}$$
 and $\{\lambda v : \lambda < 0\}.$ (6.75)

Definition 6.24. An *orientation of* \mathbb{L} is a choice of one of these components.

Notation. We call the preferred component \mathbb{L}_+ (the positive component). We call the other component \mathbb{L}_- (the negative component).

We define a vector v to be *positively oriented* if $v \in \mathbb{L}_+$. Now, let V be an *n*-dimensional vector space.

Definition 6.25. An orientation of V is an orientation of the one-dimensional vector space $\Lambda^n(V^*)$. That is, an orientation of V is a choice of $\Lambda^n(V^*)_+$.

Suppose that V_1, V_2 are oriented *n*-dimensional vector spaces, and let $A : V_1 \to V_2$ be a bijective linear map.

Definition 6.26. The map A is orientation preserving if

$$\omega \in \Lambda^n(V_2)_+ \implies A^* \omega \in \Lambda^n(V_1)_+. \tag{6.76}$$

Suppose that V_3 is also an oriented *n*-dimensional vector space, and let $B: V_2 \to V_3$ be a bijective linear map. If A and B are orientation preserving, then BA is also orientation preserving.

Finally, let us generalize the notion of orientation to orientations of manifolds. Let $X \subseteq \mathbb{R}^N$ be an *n*-dimensional manifold.

Definition 6.27. An orientation of X is a function on X which assigns to each point $p \in X$ an orientation of T_pX .

We give two examples of orientations of a manifold:

Example 1: Let $\omega \in \Lambda^n(X)$, and suppose that ω is nowhere vanishing. Orient X by assigning to $p \in X$ the orientation of T_pX for which $\omega_p \in \Lambda^n(T_p^*X)_+$.

Example 2: Take X = U, an open subset of \mathbb{R}^n , and let

$$\omega = dx_1 \wedge \dots \wedge dx_n. \tag{6.77}$$

Define an orientation as in the first example. This orientation is called the *standard* orientation of U.

Definition 6.28. An orientation of X is a \mathcal{C}^{∞} orientation if for every point $p \in X$, there exists a neighborhood U of p in X and an n-form $\omega \in \Omega^n(U)$ such that for all points $q \in U$, $\omega_q \in \Lambda^n(T_q^*X)_+$.

From now on, we will only consider \mathcal{C}^{∞} orientations.

Theorem 6.29. If X is oriented, then there exists $\omega \in \Omega^n(X)$ such that for all $p \in X$, $\omega_p \in \Lambda^n(T_p^*X)_+$.

Proof. For every point $p \in X$, there exists a neighborhood U_p of p and an n-form $\omega^{(p)} \in \Omega^n(U_p)$ such that for all $q \in U_p$, $(\omega^{(p)})_q \in \Lambda^n(T_Q^*X)_+$.

Take ρ_i , i = 1, 2, ..., a partition of unity subordinate to $\mathcal{U} = \{U_p : p \in X\}$. For every *i*, there exists a point *p* such that $\rho_i \in \mathcal{C}_0^{\infty}(U_p)$. Let

$$\omega_i = \begin{cases} \rho_i \omega^{(p)} & \text{on } U_p, \\ 0 & \text{on the } X - U_p. \end{cases}$$
(6.78)

Since the ρ_i 's are compactly supported, ω_i is a \mathcal{C}^{∞} map. Let

$$\omega = \sum \omega_i. \tag{6.79}$$

One can check that ω is positively oriented at every point.

Definition 6.30. An *n*-form $\omega \in \Omega^n(X)$ with the property hypothesized in the above theorem is called a *volume form*.

Remark. If ω_1, ω_2 are volume forms, then we can write $\omega_2 = f\omega_1$, for some $f \in \mathcal{C}^{\infty}(X)$ (where $f \neq 0$ everywhere). In general, f(p) > 0 because $(\omega_1)_p, (\omega_2)_p \in \Lambda^n(T_p^*X)_+$. So, if ω_1, ω_2 are volume forms, then $\omega_2 = f\omega_1$, for some $f \in \mathcal{C}^{\infty}(X)$ such that f > 0.

Remark. Problem #6 on the homework asks you to show that if X is orientable and connected, then there are exactly two ways to orient it. This is easily proved using the above Remark.

Suppose that $X \subseteq \mathbb{R}^n$ is a one-dimensional manifold (a "curve"). Then T_pX is one-dimensional. We can find vectors $v, -v \in T_pX$ such that ||v|| = 1. An orientation of X is just a choice of v or -v.

Now, suppose that X is an (n-1)-dimensional manifold in \mathbb{R}^n . Define

$$N_p X = \{ v \in T_p \mathbb{R}^n : v \perp w \text{ for all } w \in T_p X \}.$$
(6.80)

Then dim $N_pX = 1$, so you can find $v, -v \in N_pX$ such that ||v|| = 1. By Exercise #5 in section 4 of the Multi-linear Algebra Notes, an orientation of T_pX is just a choice of v or -v.

Suppose X_1, X_2 are oriented *n*-dimensional manifolds, and let $f : X_1 \to X_2$ be a diffeomorphism.

Definition 6.31. The map f is orientation preserving if for every $p \in X_1$,

$$df_p: T_p X_1 \to T_q X_2 \tag{6.81}$$

is orientation preserving, where q = f(p).

Remark. Let ω_2 be a volume form on X_2 . Then f is orientation preserving if and only if $f^*\omega_2 = \omega_1$ is a volume form on X_1 .

We look at an example of what it means for a map to be orientation preserving. Let U, V be open sets on \mathbb{R}^n with the standard orientation. Let $f : U \to V$ be a diffeomorphism. So, by definition, the form

$$dx_1 \wedge \dots \wedge dx_n \tag{6.82}$$

is a volume form of V. The form

$$f^* dx_1 \wedge \dots \wedge dx_n = \det\left[\frac{\partial f_i}{\partial x_j}\right] dx_1 \wedge \dots \wedge dx_n$$
 (6.83)

is a volume form of U if and only if

$$\det\left[\frac{\partial f_i}{\partial x_j}\right] > 0,\tag{6.84}$$

that is, if and only if f is orientation preserving in our old sense.

Now that we have studied orientations of manifolds, we have all of the ingredients we need to study integration theory for manifolds.