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Lecture 34


6.6 Orientation of Manifolds 

Let X be an ndimensional manifold in RN . Assume that X is a closed subset of RN . 
Let f : X → R be a C ∞ map. 

Definition 6.21. We remind you that the support of f is defined to be 

supp f = { x ∈ X : f(x) = 0} . (6.69) 

Since X is closed, we don’t have to worry about whether we are taking the closure 
in X or in Rn . 

Note that 
f ∈ C ∞0 (X) ⇐⇒ supp f is compact. (6.70) 

Let ω ∈ Ωk(X). Then 
supp ω = { p ∈ X : ωp � = 0} . (6.71) 

We use the notation 

ω ∈ Ωk supp ω is compact. (6.72) c (X) ⇐⇒


We will be using partitions of unity, so we remind you of the definition:


Definition 6.22. A collection of functions { ρi ∈ C 0
∞(X) : i = 1, 2, 3, . . . } is a partition 

of unity if 

1. 0 ≤ ρi, 

2. For every compact set A ⊆ X, there exists N > 0 such that supp ρi ∩ A = φ 
for all i > N , 

3. ρi = 1. 

Suppose the collection of sets U = { Uα : α ∈ I} is a covering of X by open subsets 
Uα of X. 

Definition 6.23. The partition of unity ρi, i = 1, 2, 3, . . . , is subordinate to U if for 
every i, there exists α ∈ I such that supp ρi ⊆ Uα. 

Claim. Given a collection of sets U = { Uα : α ∈ I} , there exists a partition of unity 
subordinate to U . 
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˜ ˜Proof. For each α ∈ I, let Uα be an open set in RN such that Uα = Uα ∩ X. We 
˜define the collection of sets U = { ̃ LetUα : α ∈ I}. 
 

˜ ˜U = Uα. (6.73) 

From our study of Euclidean space, we know that there exists a partition of unity 
˜ 0 (Ũ), i = 1, 2, 3, . . . , subordinate to Ũ . Let ιX : X Ũ be the inclusion map. ρi ∈ C∞ →
Then 

ρi = ρ̃i ◦ ιX = ι∗ ρ̃i, (6.74) X 

which you should check. 

We review orientations in Euclidean space before generalizing to manifolds. For a 
more comprehensive review, read section 7 of the Multilinear Algebra notes. 

Suppose L is a onedimensional vector space and that v ∈ L−{0}. The set L−{0}
has two components: 

{λv : λ > 0} and {λv : λ < 0}. (6.75) 

Definition 6.24. An orientation of L is a choice of one of these components. 

Notation. We call the preferred component L+ (the positive component). We call 
the other component L− (the negative component). 

We define a vector v to be positively oriented if v ∈ L+. 
Now, let V be an ndimensional vector space. 

Definition 6.25. An orientation of V is an orientation of the onedimensional vector 
space Λn(V ∗). That is, an orientation of V is a choice of Λn(V ∗)+. 

Suppose that V1, V2 are oriented ndimensional vector spaces, and let A : V1 → V2 

be a bijective linear map. 

Definition 6.26. The map A is orientation preserving if 

ω ∈ Λn(V2)+ = (6.76) ⇒ A∗ω ∈ Λn(V1)+. 

Suppose that V3 is also an oriented ndimensional vector space, and let B : V2 → V3 

be a bijective linear map. If A and B are orientation preserving, then BA is also 
orientation preserving. 

Finally, let us generalize the notion of orientation to orientations of manifolds. 
Let X ⊆ RN be an ndimensional manifold. 

Definition 6.27. An orientation of X is a function on X which assigns to each point 
p ∈ X an orientation of TpX. 
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We give two examples of orientations of a manifold: 
Example 1: Let ω ∈ Λn(X), and suppose that ω is nowhere vanishing. Orient X 

by assigning to p ∈ X the orientation of TpX for which ωp ∈ Λn(T ∗X)+.p 

Example 2: Take X = U , an open subset of Rn, and let 

ω = dx1 ∧ · · · ∧ dxn. (6.77) 

Define an orientation as in the first example. This orientation is called the standard 
orientation of U . 

Definition 6.28. An orientation of X is a C∞ orientation if for every point p ∈ X, 
there exists a neighborhood U of p in X and an nform ω ∈ Ωn(U) such that for all 
points q ∈ U , ωq ∈ Λn(T ∗X)+.q 

From now on, we will only consider C∞ orientations. 

Theorem 6.29. If X is oriented, then there exists ω ∈ Ωn(X) such that for all 
p ∈ X, ωp ∈ Λn(Tp 

∗X)+. 

Proof. For every point p ∈ X, there exists a neighborhood Up of p and an n form 
ω(p) ∈ Ωn(Up) such that for all q ∈ Up, (ω(p))q ∈ Λn(T ∗ X)+.Q

Take ρi, i = 1, 2, . . . , a partition of unity subordinate to U = {Up : p ∈ X}. For 
every i, there exists a point p such that ρi ∈ C0

∞(Up). Let 

ρiω
(p) on Up,

ωi = (6.78) 
0 on the X − Up. 

Since the ρi’s are compactly supported, ωi is a C∞ map. Let 

ω = ωi. (6.79) 

One can check that ω is positively oriented at every point. 

Definition 6.30. An nform ω ∈ Ωn(X) with the property hypothesized in the above 
theorem is called a volume form. 

Remark. If ω1, ω2 are volume forms, then we can write ω2 = fω1, for some f ∈ 
C∞(X) (where f = 0 everywhere). In general, f(p) > 0 because (ω1)p, (ω2)p ∈
Λn(T ∗X)+. So, if ω1, ω2 are volume forms, then ω2 = fω1, for some f ∈ C∞(X) such p 

that f > 0. 

Remark. Problem #6 on the homework asks you to show that if X is orientable and 
connected, then there are exactly two ways to orient it. This is easily proved using 
the above Remark. 
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Suppose that X ⊆ Rn is a onedimensional manifold (a “curve”). Then TpX is 
onedimensional. We can find vectors v,−v ∈ TpX such that ||v|| = 1. An orientation 
of X is just a choice of v or −v. 

Now, suppose that X is an (n − 1)dimensional manifold in Rn . Define 

NpX = {v ∈ TpRn : v ⊥ w for all w ∈ TpX}. (6.80) 

Then dim NpX = 1, so you can find v,−v ∈ NpX such that ||v|| = 1. By Exercise #5 
in section 4 of the Multilinear Algebra Notes, an orientation of TpX is just a choice 
of v or −v. 

Suppose X1, X2 are oriented ndimensional manifolds, and let f : X1 → X2 be a 
diffeomorphism. 

Definition 6.31. The map f is orientation preserving if for every p ∈ X1, 

dfp : TpX1 → TqX2 (6.81) 

is orientation preserving, where q = f(p). 

Remark. Let ω2 be a volume form on X2. Then f is orientation preserving if and 
only if f ∗ω2 = ω1 is a volume form on X1. 

We look at an example of what it means for a map to be orientation preserving. 
Let U, V be open sets on Rn with the standard orientation. Let f : U V be a →
diffeomorphism. So, by definition, the form 

(6.82) dx1 ∧ · · · ∧ dxn 

is a volume form of V . The form 

∂fi 
= det (6.83) f ∗dx1 ∧ · · · ∧ dxn 

∂xj 
dx1 ∧ · · · ∧ dxn 

is a volume form of U if and only if 

∂fi
det > 0, (6.84) 

∂xj 

that is, if and only if f is orientation preserving in our old sense. 
Now that we have studied orientations of manifolds, we have all of the ingredients 

we need to study integration theory for manifolds. 
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