Lecture 31

6.3 Examples of Manifolds

We begin with a review of the definition of a manifold.
Let X be a subset of \mathbb{R}^{n}, let Y be a subset of \mathbb{R}^{m}, and let $f: X \rightarrow Y$ be a continuous map.

Definition 6.6. The map f is \mathcal{C}^{∞} if for every $p \in X$, there exists a neighborhood U_{p} of p in \mathbb{R}^{n} and a \mathcal{C}^{∞} map $g_{p}: U_{p} \rightarrow \mathbb{R}^{m}$ such that $g_{p}=f$ on $U_{p} \cap X$.

Claim. If $f: X \rightarrow Y$ is continuous, then there exists a neighborhood U of X in \mathbb{R}^{n} and a \mathcal{C}^{∞} map $g: U \rightarrow \mathbb{R}^{m}$ such that $g=f$ on $U \cap X$.

Definition 6.7. The map $f: X \rightarrow Y$ is a diffeomorphism if it is one-to-one, onto, and both f and f^{-1} are \mathcal{C}^{∞} maps.

We define the notion of a manifold.
Definition 6.8. A subset X of \mathbb{R}^{N} is an n-dimensional manifold if for every $p \in X$, there exists a neighborhood V of p in \mathbb{R}^{N}, an open set U in \mathbb{R}^{n}, and a diffeomorphism $\phi: U \rightarrow X \cap V$.

Intuitively, the set X is an n-dimensional manifold if locally near every point $p \in X$, the set X "looks like an open subset of \mathbb{R}^{n}."

Manifolds come up in practical applications as follows:
Let U be an open subset of \mathbb{R}^{N}, let $k<N$, and let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{k}$ be a \mathcal{C}^{∞} map. Suppose that 0 is a regular value of f, that is, $f^{-1}(0) \cap C_{f}=\phi$.

Theorem 6.9. The set $X=f^{-1}(0)$ is an n-dimensional manifold, where $n=N-k$.
Proof. If $p \in f^{-1}(0)$, then $p \notin C_{f}$. So the map $\operatorname{Df}(p): \mathbb{R}^{N} \rightarrow \mathbb{R}^{k}$ is onto. The map f is a submersion at p.

By the canonical submersion theorem, there exists a neighborhood V of 0 in \mathbb{R}^{n}, a neighborhood U_{0} of p in U, and a diffeomorphism $g: V \rightarrow U$ such that

$$
\begin{equation*}
f \circ g=\pi \tag{6.7}
\end{equation*}
$$

Recall that $\mathbb{R}^{N}=\mathbb{R}^{\ell} \times \mathbb{R}^{n}$ and $\pi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{k}$ is the map that sends

$$
\begin{equation*}
(x, y) \in \mathbb{R}^{k} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{k} \tag{6.8}
\end{equation*}
$$

Hence, $\pi^{-1}(0)=\{0\} \times \mathbb{R}^{n}=\mathbb{R}^{n}$. By Equation 6.7, the function g maps $V \cap \pi^{-1}(0)$ diffeomorphically onto $U_{0} \cap f^{-1}(0)$. But $V \cap \pi^{-1}(0)$ is a neighborhood of 0 in \mathbb{R}^{n} and $U_{0} \cap f^{-1}(0)$ is a neighborhood of p in X.

We give three examples of applications of the preceding theorem.

1. We consider the n-sphere S^{n}. Define a map

$$
\begin{equation*}
f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}, \quad f(x)=x_{1}^{2}+\ldots+x_{n+1}^{2}-1 \tag{6.9}
\end{equation*}
$$

The derivative is $(D f)(x)=2\left[x_{1}, \ldots, x_{n+1}\right]$, so $C_{f}=\{0\}$. If $a \in f^{-1}(0)$, then $\sum a_{i}^{2}=1$, so $a \notin C_{f}$. Thus, the set $f^{-1}(0)=S^{n}$ is an n-dimensional manifold.
2. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be a \mathcal{C}^{∞} map. Define

$$
\begin{equation*}
X=\operatorname{graph} g=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{k}: y=g(x)\right\} \tag{6.10}
\end{equation*}
$$

Note that $X \subseteq \mathbb{R}^{n} \times \mathbb{R}^{k}=\mathbb{R}^{n+k}$.
Claim. The set X is an n-dimensional manifold.
Proof. Define a map $f: \mathbb{R}^{n} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ by

$$
\begin{equation*}
f(x, y)=y-g(x) \tag{6.11}
\end{equation*}
$$

Note that $D f(x, y)=\left[-D g(x), I_{k}\right]$. This is always of rank k, so $C_{f}=\phi$. Hence, the graph g is an n-dimensional manifold.
3. The following example comes from Munkres section 24, exercise \#6. Let

$$
\begin{equation*}
\mathcal{M}_{n}=\text { the set of all } n \times n \text { matrices, } \tag{6.12}
\end{equation*}
$$

so

$$
\begin{equation*}
\mathcal{M}_{n} \cong \mathbb{R}^{n^{2}} \tag{6.13}
\end{equation*}
$$

With any element $\left[a_{i j}\right]$ in \mathcal{M}_{n} we associate a vector

$$
\begin{equation*}
\left(a_{11}, \ldots, a_{1 n}, a_{21}, \ldots, a_{2 n}, \ldots\right) \tag{6.14}
\end{equation*}
$$

Now, let

$$
\begin{equation*}
\mathcal{S}_{n}=\left\{A \in \mathcal{M}_{n}: A=A^{t}\right\} \tag{6.15}
\end{equation*}
$$

so

$$
\begin{equation*}
\mathcal{S}_{n} \cong \mathbb{R}^{\frac{n(n+1)}{2}} \tag{6.16}
\end{equation*}
$$

With any element $\left[a_{i j}\right]$ in \mathcal{S}_{n} we associate a vector

$$
\begin{equation*}
\left(a_{11}, \ldots, a_{1 n}, a_{22}, a_{23}, \ldots, a_{2 n}, a_{33}, a_{34}, \ldots\right) \tag{6.17}
\end{equation*}
$$

The above association avoids the "redundancies" $a_{12}=a_{21}, a_{31}=a_{13}, a_{32}=a_{23}$, etc.
Define

$$
\begin{equation*}
O(n)=\left\{A \in \mathcal{M}_{n}: A^{t} A=I\right\} \tag{6.18}
\end{equation*}
$$

which is the set of orthogonal $n \times n$ matrices.
As an exercise, the student should prove the following claim.

Claim. The set $O(n) \subseteq \mathcal{M}_{n}$ is an $\frac{n(n-1)}{2}$-dimensional manifold.
Proof Hint: First hint: Let $f: \mathcal{M}_{n} \rightarrow \mathcal{S}_{n}$ be the map defined by

$$
\begin{equation*}
f(A)=A^{t} A-I \tag{6.19}
\end{equation*}
$$

so $O(n)=f^{-1}(0)$. Show that $f^{-1}(0) \cap C_{f}=\phi$. The main idea is to show that if $A \notin f^{-1}(0)$, then the map $D f(A): \mathcal{M}_{n} \rightarrow \mathcal{S}_{n}$ is onto.
Second hint: Note that $D f(A)$ is the map the sends $B \in \mathcal{M}_{n}$ to $A^{t} B+B^{t} A$.
Manifolds are often defined by systems of non-linear equations:
Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{k}$ be a continuous map, and suppose that $C_{f} \cap f^{-1}(0)=\phi$. Then $X=f^{-1}(0)$ is an n-dimensional manifold. Suppose that $f=\left(f_{1}, \ldots, f_{k}\right)$. Then X is defined by the system of equations

$$
\begin{equation*}
f_{i}\left(x_{1}, \ldots, x_{N}\right)=0, \quad i=1, \ldots, k . \tag{6.20}
\end{equation*}
$$

This system of equations is called non-degenerate, since for every $x \in X$ the matrix

$$
\begin{equation*}
\left[\frac{\partial f_{i}}{\partial x_{j}}(x)\right] \tag{6.21}
\end{equation*}
$$

is of rank k.
Claim. Every n-dimensional manifold $X \subseteq \mathbb{R}^{N}$ can be described locally by a system of k non-degenerate equations of the type above.

Proof Idea: Let $X \subseteq \mathbb{R}^{N}$ be an n-dimensional manifold. Let $p \in X$, let U be an open subset of \mathbb{R}^{n}, and let V be an open neighborhood of p in \mathbb{R}^{N}. Let $\phi: I \rightarrow V \cap X$ be a diffeomorphism. Modifying ϕ by a translation if necessary we can assume that $0 \in U$ and $\phi(0)=p$. We can think of ϕ as a map $\phi: U \rightarrow \mathbb{R}^{N}$ mapping U into X.
Claim. The linear map $(D \phi)(0): \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ is injective.
Proof. The map $\phi^{-1}: V \cap X \rightarrow U$ is a \mathcal{C}^{∞} map, so (shrinking V if necessary) we can assume there is a $\mathcal{C}^{\infty} \operatorname{map} \psi: V \rightarrow U$ with $\psi=\phi^{-1}$ on $V \cap X$. Since ϕ maps U onto $V \cap X$, we have $\psi \circ \phi=\phi^{-1} \circ \phi=I=$ the identity map of U onto itself. Thus,

$$
\begin{equation*}
I=D(\psi \circ \phi)(0)=(D \psi)(p)(D \phi)(0) . \tag{6.22}
\end{equation*}
$$

That is, $D \psi(p)$ is a "left inverse" of $D \phi(0)$. So, $D \phi(0)$ is injective.

We can conclude that $\phi: U \rightarrow \mathbb{R}^{N}$ is an immersion at 0 . The canonical immersion theorem tells us that there exists a neighborhood U_{0} of 0 in U, a neighborhood V_{p} of p in V, and a $\mathcal{C}^{\infty} \operatorname{map} g: V_{p} \rightarrow \mathbb{R}^{N}$ mapping p onto 0 and mapping V_{p} diffeomorphically onto a neighborhood \mathcal{O} of 0 in \mathbb{R}^{N} such that

$$
\begin{equation*}
\iota^{-1}(\mathcal{O})=U_{0} \tag{6.23}
\end{equation*}
$$

and

$$
\begin{equation*}
g \circ \phi=\iota \tag{6.24}
\end{equation*}
$$

on U_{0}. Here, the map ι is the canonical submersion map $\iota: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ that maps $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{n}, 0, \ldots, 0\right)$.

By Equation 6.24, the function g maps $\phi\left(U_{0}\right)$ onto $\iota\left(U_{0}\right)$. However, by Equation 6.23 , the set $\iota\left(U_{0}\right)$ is the subset of \mathcal{O} defined by the equations

$$
\begin{equation*}
x_{i}=0, \quad i=n+1, \ldots, N . \tag{6.25}
\end{equation*}
$$

So, if $g=\left(g_{1}, \ldots, g_{N}\right)$, then $\phi\left(U_{0}\right)=X \cap V_{p}$ is defined by the equations

$$
\begin{equation*}
g_{i}=0, \quad i=n+1, \ldots, N . \tag{6.26}
\end{equation*}
$$

Moreover, the $N \times N$ matrix

$$
\begin{equation*}
\left[\frac{\partial g_{i}}{\partial x_{j}}(x)\right] \tag{6.27}
\end{equation*}
$$

is of rank N at every point $x \in V_{p}$, since $g: V_{p} \rightarrow \mathcal{O}$ is a diffeomorphism. Hence, the last $N-n$ row vectors of this matrix

$$
\begin{equation*}
\left(\frac{\partial g_{i}}{\partial x_{1}}, \ldots, \frac{\partial g_{i}}{\partial x_{N}}\right), i=n+1, \ldots, N \tag{6.28}
\end{equation*}
$$

are linearly independent at every point $x \in V_{p}$.
Now let $k=N-n$ and let $f_{i}=g_{i+n}, i=1, \ldots, k$. Then $X \cap V_{p}$ is defined by the equations

$$
\begin{equation*}
f_{i}(x)=0, \quad i=1, \ldots, k \tag{6.29}
\end{equation*}
$$

and the $k \times N$ matrix

$$
\begin{equation*}
\left[\frac{\partial f_{i}}{\partial x_{k}}(x)\right] \tag{6.30}
\end{equation*}
$$

is of rank k at all points $x \in V_{p}$. In other words, the system of equations 6.29 is non-degenerate.

