Lecture 28

Let U, V be connected open sets of \mathbb{R}^n , and let $f: U \to V$ be a diffeomorphism. Then

$$\deg(f) = \begin{cases} +1 & \text{if } f \text{ is orient. preserving,} \\ -1 & \text{if } f \text{ is orient. reversing.} \end{cases}$$
(5.124)

We showed that given any $\omega \in \Omega_c^n(V)$,

$$\int_{U} f^* \omega = \pm \int_{V} \omega. \tag{5.125}$$

Let $\omega = \phi(x) dx_1 \wedge \cdots \wedge dx_n$, where $\phi \in \mathcal{C}_0^{\infty}(V)$. Then

$$f^*\omega = \phi(f(x)) \det\left[\frac{\partial f_i}{\partial x_j}(x)\right] dx_1 \wedge \dots \wedge dx_n,$$
 (5.126)

 $\mathrm{so},$

$$\int_{U} \phi(f(x)) \det\left[\frac{\partial f_i}{\partial x_j}\right] dx = \pm \int_{V} \phi(x) dx.$$
(5.127)

Notice that

$$f \text{ is orientation preserving } \iff \det \left[\frac{\partial f_i}{\partial x_j}(x)\right] > 0,$$
 (5.128)

$$f$$
 is orientation reversing $\iff \det\left[\frac{\partial f_i}{\partial x_j}(x)\right] < 0.$ (5.129)

So, in general,

$$\int_{U} \phi(f(x)) \left| \det \left[\frac{\partial f_i}{\partial x_j}(x) \right] \right| dx.$$
(5.130)

As usual, we assumed that $f \in \mathcal{C}^{\infty}$.

Remark. The above is true for $\phi \in C_0^1$, a compactly supported continuous function. The proof of this is in section 5 of the Supplementary Notes. The theorem is true even if only $f \in C^1$ (the notes prove it for $f \in C^2$).

Today we show how to compute the degree in general.

Let U, V be connected open sets in \mathbb{R}^n , and let $f: U \to V$ be a proper \mathcal{C}^{∞} map.

Claim. Let B be a compact subset of V, and let $A = f^{-1}(B)$. If U_0 is an open subset of U with $A \subseteq U_0$, then there exists an open subset V_0 of V with $B \subseteq V_0$ such that $f^{-1}(V_0) \subseteq U_0$.

Proof. Let $C \subseteq V$ be a compact set with $B \subseteq \text{Int } C$, and let $W = f^{-1}(C) - U_0$. The set W is compact, so the set f(W) is also compact. Moreover, $f(W) \cap B = \phi$ since $f^{-1}(B) \subseteq U_0$.

Now, let $V_0 = \text{Int } C - f(W)$. This set is open, and

$$\begin{aligned}
f^{-1}(V_0) &\subseteq f^{-1}(\operatorname{Int} C) - W \\
&\subseteq U_0.
\end{aligned}$$
(5.131)

Claim. If $X \subseteq U$ is closed, then f(X) is closed in V.

Proof. Take any point $p \in V - f(x)$. Then $f^{-1}(p) \in U - X$. Apply the previous result with $B = \{p\}$, $A = f^{-1}(p)$, and $U_0 = U - X$. There exists an open set $V_0 \ni p$ such that $f^{-1} \subseteq U - X$. The set $V_0 \cap f(X) = \phi$, so V - f(X) is open in V. \Box

We now remind you of Sard's Theorem. Let $f:U\to V$ be a proper \mathcal{C}^∞ map. We define the critical set

$$C_f = \{ p \in U : Df(p) \text{ is not bijective} \}.$$
(5.132)

The set C_f is closed. The set $f(C_f)$ in V is a set of measure zero. The set $f(C_f)$ is closed as well, since f is proper.

Definition 5.18. A point $q \in V$ is a regular value of f if $q \in V - f(C_f)$.

Sard's Theorem basically says that there are "lots" of regular values.

Lemma 5.19. If q is a regular value, then $f^{-1}(q)$ is a finite set.

Proof. First, $p \in f^{-1}(q) \implies p \notin C_f$. So, $Df(p) : \mathbb{R}^n \to \mathbb{R}^n$ is bijective. By the IFT, the map f is a diffeomorphism of a neighborhood U_p of $p \in U$ onto a neighborhood of q. In particular, since f is one-to-one and onto,

$$U_p \cap f^{-1}(q) = \{p\}.$$
 (5.133)

Consider the collection $\{U_p : p \in f^{-1}(q)\}$, which is an open cover of $f^{-1}(q)$. The H-B Theorem tells us that there exists a finite subcover $\{U_{p_i}, i = 1, \ldots, N\}$. Hence,

$$f^{-1}(q) = \{p_1, \dots, p_N\}.$$
 (5.134)

Theorem 5.20. The degree of f is

$$\deg(f) = \sum_{i=1}^{N} \sigma_{p_i},\tag{5.135}$$

where

$$\sigma_{p_i} = \begin{cases} +1 & \text{if } Df(p_i) \text{ is orient. preserving,} \\ -1 & \text{if } Df(p_i) \text{ is orient. reversing.} \end{cases}$$
(5.136)

So, to calculate the degree, you just pick any regular value q and "count" the number of points in the pre-image of q, keeping track of the value of σ_{p_i} .

Proof. For each $p_i \in f^{-1}(q)$, let U_{p_i} be an open neighborhood of p_i such that f maps U_{p_i} diffeomorphically onto a neighborhood of q. We can assume that the U_{p_i} 's do not intersect.

Now, choose a neighborhood V_0 of q such that

$$f^{-1}(V_0) \subseteq \bigcup U_{p_i}.$$
(5.137)

Next, replace each U_{p_i} by $U_{p_i} \cap f^{-1}(V_0)$. So, we can assume the following:

- 1. f is a diffeomorphism of U_{p_i} onto V_0 ,
- 2. $f^{-1}(V_0) = \bigcup U_{p_i},$
- 3. The U_{p_i} 's don't intersect.

Choose $\omega \in \Omega^n_c(V_0)$ such that

$$\int_{V} \omega = 1. \tag{5.138}$$

Then,

$$\int_{U} f^{*} \omega = \sum_{i} \int_{U_{p_{i}}} f^{*} \omega$$
$$= \sum_{i} \sigma_{p_{i}} \int_{V_{0}} \omega$$
$$= \sum_{i} \sigma_{p_{i}}.$$
(5.139)

But,

$$\int_{U} f^* \omega = (\deg f) \int_{U} \omega = \deg f, \qquad (5.140)$$

 \mathbf{SO}

$$\sum \sigma_{p_i} = \deg f. \tag{5.141}$$

This is a very nice theorem that is not often discussed in textbooks.

The following is a useful application of this theorem. Suppose $f^{-1}(q)$ is empty, so $q \notin f(U)$. Then $q \notin f(C_f)$, so q is a regular value. Therefore,

$$\deg(f) = 0. \tag{5.142}$$

This implies the following useful theorem.

Theorem 5.21. If $\deg(f) \neq 0$, then $f: U \to V$ is onto.

This theorem can let us know if a system of non-linear equations has a solution, simply by calculating the degree. The way to think about this is as follows. Let $f = (f_1, \ldots, f_n)$ and let $q = (c_1, \ldots, c_n) \in V$. If $q \in f(U)$ then there exists a solution $x \in U$ to the system of non-linear equations

$$f_i(x) = c_i, \quad i = 1, \dots, n.$$
 (5.143)