Lecture 25

5.1 The Poincare Lemma

Let U be an open subset of \mathbb{R}^{n}, and let $\omega \in \Omega^{k}(U)$ be a k-form. We can write $\omega=\sum a_{I} d x_{I}, I=\left(i_{1}, \ldots, i_{k}\right)$, where each $a_{I} \in \mathcal{C}^{\infty}(U)$. Note that

$$
\begin{equation*}
\omega \in \Omega_{c}^{k} \Longleftrightarrow a_{I} \in \mathcal{C}_{0}^{\infty}(U) \text { for each } I \tag{5.17}
\end{equation*}
$$

We are interested in $\omega \in \Omega_{c}^{n}(U)$, which are of the form

$$
\begin{equation*}
\omega=f d x_{1} \wedge \cdots \wedge d x_{n} \tag{5.18}
\end{equation*}
$$

where $f \in \mathcal{C}_{0}^{\infty}(U)$. We define

$$
\begin{equation*}
\int_{U} \omega=\int_{U} f=\int_{U} f d x \tag{5.19}
\end{equation*}
$$

the Riemann integral of f over U.
Our goal over the next couple lectures is to prove the following fundamental theorem known as the Poincare Lemma.

Poincare Lemma. Let U be a connected open subset of \mathbb{R}^{n}, and let $\omega \in \Omega_{c}^{n}(U)$. The following conditions are equivalent:

1. $\int_{U} \omega=0$,
2. $\omega=d \mu$, for some $\mu \in \Omega_{c}^{n-1}(U)$.

In today's lecture, we prove this for $U=\operatorname{Int} Q$, where $Q=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ is a rectangle.

Proof. First we show that (2) implies (1).

Notation.

$$
\begin{equation*}
d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{n} \equiv d x_{1} \wedge \cdots \wedge d x_{i-1} \wedge d x_{i+1} \wedge \cdots \wedge d x_{n} \tag{5.20}
\end{equation*}
$$

Let $\mu \in \Omega_{c}^{n-1}(U)$. Specifically, define

$$
\begin{equation*}
\mu=\sum_{i} f_{i} d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{n} \tag{5.21}
\end{equation*}
$$

where each $f_{i} \in \mathcal{C}_{0}^{\infty}(U)$. Every $\mu \in \Omega_{c}^{n-1}(U)$ can be written this way.
Applying d we obtain

$$
\begin{equation*}
d \mu=\sum_{i} \sum_{j} \frac{\partial f_{i}}{\partial x_{j}} d x_{j} \wedge d x_{1} \wedge \cdots \wedge{\widehat{d x_{i}}} \wedge \cdots \wedge d x_{n} \tag{5.22}
\end{equation*}
$$

Notice that if $i \neq j$, then the i, j th summand is zero, so

$$
\begin{align*}
d \mu & =\sum_{i} \frac{\partial f_{i}}{\partial x_{i}} d x_{i} \wedge d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{n} \tag{5.23}\\
& =\sum(-1)^{i-1} \frac{\partial f_{i}}{\partial x_{i}} d x_{1} \wedge \cdots \wedge d x_{n}
\end{align*}
$$

Integrate to obtain

$$
\begin{equation*}
\int_{U} d \mu=\sum(-1)^{i-1} \int_{U} \frac{\partial f_{i}}{\partial x_{i}} \tag{5.24}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\int_{a_{i}}^{b_{i}} \frac{\partial f_{i}}{\partial x_{i}} d x_{i}=\left.f_{i}(x)\right|_{x_{i}=a_{i}} ^{x_{i}=b_{i}}=0-0=0 \tag{5.25}
\end{equation*}
$$

because f is compactly supported in U. It follows from the Fubini Theorem that

$$
\begin{equation*}
\int_{U} \frac{\partial f_{i}}{\partial x_{i}}=0 \tag{5.26}
\end{equation*}
$$

Now we prove the other direction, that (1) implies (2). Before our proof we make some remarks about functions of one variable.

Suppose $I=(a, b) \subseteq \mathbb{R}$, and let $g \in \mathcal{C}_{0}^{\infty}(I)$ such that supp $g \subseteq[c, d]$, where $a<c<d<b$. Also assume that

$$
\begin{equation*}
\int_{a}^{b} g(s) d s=0 \tag{5.27}
\end{equation*}
$$

Define

$$
\begin{equation*}
h(x)=\int_{a}^{x} g(s) d s \tag{5.28}
\end{equation*}
$$

where $a \leq x \leq b$.
Claim. The function h is also supported on c, d.
Proof. If $x>d$, then we can write

$$
\begin{equation*}
h(x)=\int_{a}^{b} g(s) d s-\int_{x}^{b} g(s) d s \tag{5.29}
\end{equation*}
$$

where the first integral is zero by assumption, and the second integral is zero because the integrand is zero.

Now we begin our proof that (1) implies (2).
Let $\omega \in \Omega^{n}(U)$, where $U=Q$, and assume that

$$
\begin{equation*}
\int_{U} \omega=0 \tag{5.30}
\end{equation*}
$$

We will use the following inductive lemma:

Lemma 5.8. For all $0 \leq k \leq n+1$, there exists $\mu \in \Omega_{c}^{n-1}(U)$ and $f \in \mathcal{C}_{0}^{\infty}(U)$ such that

$$
\begin{equation*}
\omega=d \mu+f d x_{1} \wedge \cdots \wedge d x_{n} \tag{5.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\int f\left(x_{1}, \ldots, x_{n}\right) d x_{k} \ldots d x_{n}=0 \tag{5.32}
\end{equation*}
$$

Note that the hypothesis for $k=0$ and $\mu=0$ says that $\int \omega=0$, which is our assumption (1). Also note that the hypothesis for $k=n+1, f=0$, and $\omega=d \mu$ is the same as the statement (2). So, if we can show that (the lemma is true for k) implies (the lemma is true for $k+1$), then we will have shown that (1) implies (2) in Poincare's Lemma. We now show this.

Assume that the lemma is true for k. That is, we have

$$
\begin{equation*}
\omega=d \mu+f d x_{1} \wedge \cdots \wedge d x_{n} \tag{5.33}
\end{equation*}
$$

and

$$
\begin{equation*}
\int f\left(x_{1}, \ldots, x_{n}\right) d x_{k} \ldots d x_{n}=0 \tag{5.34}
\end{equation*}
$$

where $\mu \in \Omega_{c}^{n-1}(U)$, and $f \in \mathcal{C}_{0}^{\infty}(\mathbb{R})$.
We can assume that μ and f are supported on $\operatorname{Int} Q^{\prime}$, where $Q^{\prime} \subseteq \operatorname{Int} Q$ and $Q^{\prime}=\left[c_{1}, d_{1}\right] \times \cdots \times\left[c_{n}, d_{n}\right]$.

Define

$$
\begin{equation*}
g\left(x_{1}, \ldots, x_{k}\right)=\int f\left(x_{1}, \ldots, x_{n}\right) d_{k+1} \ldots d x_{n} \tag{5.35}
\end{equation*}
$$

Note that g is supported on the interior of $\left[c_{1}, d_{1}\right] \times \cdots \times\left[c_{k}, d_{k}\right]$. Also note that

$$
\begin{equation*}
\int_{a_{k}}^{b_{k}} g\left(x_{1}, \ldots, x_{k-1}, s\right) d s=\int f\left(x_{1}, \ldots, x_{n}\right) d x_{k} \ldots d x_{n}=0 \tag{5.36}
\end{equation*}
$$

by our assumption that the lemma holds true for k.
Now, define

$$
\begin{equation*}
h\left(x_{1}, \ldots, x_{k}\right)=\int_{a_{k}}^{x_{k}} g\left(x_{1}, \ldots, x_{k-1}, s\right) d s \tag{5.37}
\end{equation*}
$$

From our earlier remark about functions of one variable, h is supported on $c_{k} \leq x_{k} \leq$ d_{k}. Also, note that h is supported on $c_{i} \leq x_{i} \leq d_{i}$, for $1 \leq i \leq k-1$. We conclude therefore that h is also supported on $\left[c_{1}, d_{1}\right] \times \cdots \times\left[c_{k}, d_{k}\right]$.

Both g and its "anti-derivative" are supported.

$$
\begin{equation*}
\frac{\partial h}{\partial x_{k}}=g . \tag{5.38}
\end{equation*}
$$

Let $\ell=n-k$, and consider $\rho=\rho\left(x_{k+1}, \ldots, x_{n}\right) \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{\ell}\right)$. Assume that ρ is supported on the rectangle $\left[c_{k+1}, d_{k+1}\right] \times \cdots \times\left[c_{n}, d_{n}\right]$ and that

$$
\begin{equation*}
\int \rho d x_{k+1} \ldots d x_{n}=1 \tag{5.39}
\end{equation*}
$$

We can always find such a function, so we just fix one such function.
Define

$$
\begin{equation*}
\nu=(-1)^{k} h\left(x_{1}, \ldots, x_{k}\right) \rho\left(x_{k+1}, \ldots, x_{n}\right) d x_{1} \wedge \cdots \wedge \widehat{d x_{k}} \wedge \cdots \wedge d x_{n} \tag{5.40}
\end{equation*}
$$

The form ν is supported on $Q^{\prime}=\left[c_{1}, d_{1}\right] \times \cdots \times\left[c_{n}, d_{n}\right]$.
Now we compute $d \nu$,

$$
\begin{equation*}
d \nu=(-1)^{k} \sum_{j} \frac{\partial}{\partial x_{j}}(h \rho) d x_{j} \wedge d x_{1} \wedge \cdots \wedge \widehat{d x_{k}} \wedge \cdots \wedge d x_{n} \tag{5.41}
\end{equation*}
$$

Note that if $j \neq k$, then the summand is zero, so

$$
\begin{align*}
d \nu & =(-1)^{k} \frac{\partial h}{\partial x_{k}} \rho d x_{k} \wedge d x_{1} \wedge \cdots \wedge \widehat{d x_{k}} \wedge \cdots \wedge d x_{n} \\
& =(-1) \frac{\partial h}{\partial x_{k}} \rho d x_{1} \wedge \cdots \wedge d x_{n} \tag{5.42}\\
& =-g \rho d x_{1} \wedge \cdots \wedge d x_{n}
\end{align*}
$$

Now, define

$$
\begin{equation*}
\mu_{\text {new }}=\mu-\nu \tag{5.43}
\end{equation*}
$$

and

$$
\begin{align*}
& \quad f_{\text {new }}=f\left(x_{1}, \ldots, x_{n}\right)-g\left(x_{1}, \ldots, x_{k}\right) \rho\left(x_{k+1}, \ldots, x_{n}\right) \tag{5.44}\\
& \omega=d \mu_{\text {new }}+f_{\text {new }} d x_{1} \wedge \cdots \wedge d x_{n} \\
& =d \mu+\left(g\left(x_{1}, \ldots, x_{k}\right) \rho\left(x_{k+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{k}\right)-g \rho\right) d x_{1} \wedge \cdots \wedge d x_{n} \tag{5.45}\\
& =d \mu+f d x_{1} \wedge \cdots \wedge d x_{n} \\
& =\omega
\end{align*}
$$

Note that

$$
\begin{align*}
\int f_{\text {new }}= & \int f_{\text {new }}\left(x_{1}, \ldots, x_{n}\right) d x_{k+1} \ldots d x_{n} \\
= & \int f\left(x_{1}, \ldots, x_{n}\right) d x_{k+1} \ldots d x_{n} \tag{5.46}\\
& -g\left(x_{1}, \ldots, x_{k}\right) \int \rho\left(x_{k+1}, \ldots, x_{n}\right) d x_{k+1} \ldots d x_{n} \\
= & g\left(x_{1}, \ldots, x_{k}\right)-g\left(x_{1}, \ldots, x_{k}\right)=0
\end{align*}
$$

which implies that the lemma is true for $k+1$.
Remark. In the above proof, we implicitly assumed that if $f \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, then

$$
\begin{equation*}
g\left(x_{1}, \ldots, x_{k}\right)=\int f\left(x_{1}, \ldots, x_{n}\right) d x_{k+1} \ldots d x_{m} \tag{5.47}
\end{equation*}
$$

is in $\mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{k}\right)$. We checked the support, but we did not check that g is in $\mathcal{C}^{\infty}\left(\mathbb{R}^{k}\right)$. The proof of this is in the Supplementary Notes.

