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Lecture 25


5.1 The Poincare Lemma 

Let U be an open subset of Rn, and let ω ∈ Ωk(U) be a kform. We can write 
ω = aIdxI , I = (i1, . . . , ik), where each aI ∈ C∞(U). Note that 

ω ∈ Ωk 
0 (U) for each I. (5.17) c ⇐⇒ aI ∈ C∞

We are interested in ω ∈ Ωn
c (U), which are of the form 

ω = fdx1 ∧ · · · ∧ dxn, (5.18) 

where f ∈ C0
∞(U). We define 

ω = f = fdx, (5.19) 
U U U 

the Riemann integral of f over U . 
Our goal over the next couple lectures is to prove the following fundamental the

orem known as the Poincare Lemma. 

Poincare Lemma. Let U be a connected open subset of Rn, and let ω ∈ Ωn
c (U). The 

following conditions are equivalent: 

1. ω = 0,
U 

2. ω = dµ, for some µ ∈ Ωn−1(U).c 

In today’s lecture, we prove this for U = Int Q, where Q = [a1, b1]× · · · × [an, bn] 
is a rectangle. 

Proof. First we show that (2) implies (1). 

Notation. 

(5.20) dx1 ∧ · · · ∧ �dxi ∧ · · · ∧ dxn ≡ dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn.


Let µ ∈ Ωn−1(U). Specifically, define
c 

µ = fidx1 ∧ · · · ∧ � (5.21) dxi ∧ · · · ∧ dxn, 
i 

where each fi ∈ C0
∞(U). Every µ ∈ Ωn−1(U) can be written this way. c 

Applying d we obtain �� ∂fi
dµ = dxi ∧ · · · ∧ dxn. (5.22) 

∂xj 
dxj ∧ dx1 ∧ · · · ∧ �

i j 

1 



�

� � 

� 

� 

Notice that if i = j, then the i, jth summand is zero, so � ∂fi
dµ = dxi ∧ · · · ∧ dxn

∂xi 
dxi ∧ dx1 ∧ · · · ∧ �

i (5.23) 

= 
� 

(−1)i−1 ∂fi 
∂xi 

dx1 ∧ · · · ∧ dxn. 

Integrate to obtain 

dµ = 
� 

(−1)i−1 ∂fi 
. (5.24) 

∂xiU U 

Note that � bi ∂fi 
dxi = fi(x) xi=ai 

= 0 − 0 = 0, (5.25) 
∂xi 

|xi=bi 

ai 

because f is compactly supported in U . It follows from the Fubini Theorem that 

∂fi 
= 0. (5.26) 

∂xiU 

Now we prove the other direction, that (1) implies (2). Before our proof we make 
some remarks about functions of one variable. 

Suppose I = (a, b) ⊆ R, and let g ∈ C0
∞(I) such that supp g ⊆ [c, d], where 

a < c < d < b. Also assume that � b 
g(s)ds = 0. (5.27) 

a 

Define � x 
h(x) = g(s)ds, (5.28) 

a 

where a ≤ x ≤ b. 

Claim. The function h is also supported on c, d. 

Proof. If x > d, then we can write � b � b 
h(x) = g(s)ds − g(s)ds, (5.29) 

a x 

where the first integral is zero by assumption, and the second integral is zero because 
the integrand is zero. 

Now we begin our proof that (1) implies (2).

Let ω ∈ Ωn(U), where U = Q, and assume that


ω = 0. (5.30) 
U 

We will use the following inductive lemma: 
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Lemma 5.8. For all 0 ≤ k ≤ n + 1, there exists µ ∈ Ωn−1(U) and f ∈ C0
∞(U) suchc 

that 
ω = dµ+ fdx1 ∧ · · · ∧ dxn	 (5.31) 

and	 � 
f(x1, . . . , xn)dxk . . . dxn = 0.	 (5.32) 

Note that the hypothesis for k = 0 and µ = 0 says that ω = 0, which is our 
assumption (1). Also note that the hypothesis for k = n + 1, f = 0, and ω = dµ 
is the same as the statement (2). So, if we can show that (the lemma is true for k) 
implies (the lemma is true for k+ 1), then we will have shown that (1) implies (2) in 
Poincare’s Lemma. We now show this. 

Assume that the lemma is true for k. That is, we have 

ω = dµ+ fdx1 ∧ · · · ∧ dxn	 (5.33) 

and � 
f(x1, . . . , xn)dxk . . . dxn = 0, (5.34) 

where µ ∈ Ωn−1(U), and f ∈ C0
∞(R).c 

We can assume that µ and f are supported on Int Q�, where Q� ⊆ Int Q and 
Q� = [c1, d1]× · · · × [cn, dn]. 

Define � 
g(x1, . . . , xk) = f(x1, . . . , xn)dk+1 . . . dxn. (5.35) 

Note that g is supported on the interior of [c1, d1]× · · · × [ck, dk]. Also note that 

bk 

g(x1, . . . , xk−1, s)ds = f(x1, . . . , xn)dxk . . . dxn = 0 (5.36) 
ak 

by	our assumption that the lemma holds true for k. 
Now, define 

xk 

h(x1, . . . , xk) = g(x1, . . . , xk−1, s)ds.	 (5.37) 
ak 

From our earlier remark about functions of one variable, h is supported on ck ≤ xk ≤
dk. Also, note that h is supported on ci ≤ xi ≤ di, for 1 ≤ i ≤ k − 1. We conclude 
therefore that h is also supported on [c1, d1]× · · · × [ck, dk]. 

Both g and its “antiderivative” are supported. 

∂h 
= g.	 (5.38) 

∂xk 

Let � = n − k, and consider ρ = ρ(xk+1, . . . , x 0 (R�). Assume that ρ isn)	∈ C∞
supported on the rectangle [ck+1, dk+1]× · · · × [cn, dn] and that 

ρdxk+1 . . . dxn = 1.	 (5.39) 
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We can always find such a function, so we just fix one such function. 
Define 

ν = (−1)kh(x1, . . . , xk)ρ(xk+1, . . . , x n. (5.40) n)dx1 ∧ · · · ∧�dxk ∧ · · · ∧ dx
The form ν is supported on Q� = [c1, d1]× · · · × [cn, dn]. 

Now we compute dν, � ∂ 
dν = (−1)k n. (5.41) 

∂xj 
(hρ)dxj ∧ dx1 ∧ · · · ∧�dxk ∧ · · · ∧ dx

j 

Note that if j = k, then the summand is zero, so 

∂h 
dν = (−1)k 

∂xk 
ρdxk ∧ dx1 ∧ · · · ∧�dxk ∧ · · · ∧ dxn 

= (−1) 
∂h 

∂xk 
ρdx1 ∧ · · · ∧ dxn (5.42) 

= −gρdx1 ∧ · · · ∧ dxn. 
Now, define 

µnew = µ− ν, (5.43) 

and 
fnew = f(x1, . . . , xn)− g(x1, . . . , xk)ρ(xk+1, . . . , xn). (5.44) 

ω = dµnew + fnew dx1 ∧ · · · ∧ dxn


= dµ+ (g(x1, . . . , xk)ρ(xk+1, . . . , xn)− f(x1, . . . , xk)− gρ)dx1 ∧ · · · ∧ dxn

(5.45) 

= dµ+ fdx1 ∧ · · · ∧ dxn


= ω.


Note that


fnew = fnew (x1, . . . , xn)dxk+1 . . . dxn 

= f(x1, . . . , xn)dxk+1 . . . dxn � (5.46) 

− g(x1, . . . , xk) ρ(xk+1, . . . , xn)dxk+1 . . . dxn 

= g(x1, . . . , xk)− g(x1, . . . , xk) = 0, 

which implies that the lemma is true for k + 1. 

Remark. In the above proof, we implicitly assumed that if f ∈ C0
∞(Rn), then 

g(x1, . . . , xk) = f(x1, . . . , xn)dxk+1 . . . dxm (5.47) 

is in C0
∞(Rk). We checked the support, but we did not check that g is in C∞(Rk). 

The proof of this is in the Supplementary Notes. 
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