Lecture 25

5.1 The Poincare Lemma

Let U be an open subset of \mathbb{R}^n , and let $\omega \in \Omega^k(U)$ be a k-form. We can write $\omega = \sum a_I dx_I, I = (i_1, \ldots, i_k)$, where each $a_I \in \mathcal{C}^{\infty}(U)$. Note that

$$\omega \in \Omega_c^k \iff a_I \in \mathcal{C}_0^\infty(U) \text{ for each } I.$$
(5.17)

We are interested in $\omega \in \Omega_c^n(U)$, which are of the form

$$\omega = f dx_1 \wedge \dots \wedge dx_n, \tag{5.18}$$

where $f \in \mathcal{C}_0^{\infty}(U)$. We define

$$\int_{U} \omega = \int_{U} f = \int_{U} f dx, \qquad (5.19)$$

the Riemann integral of f over U.

Our goal over the next couple lectures is to prove the following fundamental theorem known as the Poincare Lemma.

Poincare Lemma. Let U be a connected open subset of \mathbb{R}^n , and let $\omega \in \Omega_c^n(U)$. The following conditions are equivalent:

1.
$$\int_U \omega = 0$$
,

2.
$$\omega = d\mu$$
, for some $\mu \in \Omega_c^{n-1}(U)$.

In today's lecture, we prove this for U = Int Q, where $Q = [a_1, b_1] \times \cdots \times [a_n, b_n]$ is a rectangle.

Proof. First we show that (2) implies (1).

Notation.

$$dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n \equiv dx_1 \wedge \dots \wedge dx_{i-1} \wedge dx_{i+1} \wedge \dots \wedge dx_n.$$
 (5.20)

Let $\mu \in \Omega_c^{n-1}(U)$. Specifically, define

$$\mu = \sum_{i} f_{i} dx_{1} \wedge \dots \wedge \widehat{dx_{i}} \wedge \dots \wedge dx_{n}, \qquad (5.21)$$

where each $f_i \in \mathcal{C}_0^{\infty}(U)$. Every $\mu \in \Omega_c^{n-1}(U)$ can be written this way.

Applying d we obtain

$$d\mu = \sum_{i} \sum_{j} \frac{\partial f_i}{\partial x_j} dx_j \wedge dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n.$$
(5.22)

Notice that if $i \neq j$, then the *i*, *j*th summand is zero, so

$$d\mu = \sum_{i} \frac{\partial f_{i}}{\partial x_{i}} dx_{i} \wedge dx_{1} \wedge \dots \wedge \widehat{dx_{i}} \wedge \dots \wedge dx_{n}$$

= $\sum (-1)^{i-1} \frac{\partial f_{i}}{\partial x_{i}} dx_{1} \wedge \dots \wedge dx_{n}.$ (5.23)

Integrate to obtain

$$\int_{U} d\mu = \sum (-1)^{i-1} \int_{U} \frac{\partial f_i}{\partial x_i}.$$
(5.24)

Note that

$$\int_{a_i}^{b_i} \frac{\partial f_i}{\partial x_i} dx_i = f_i(x) |_{x_i = a_i}^{x_i = b_i} = 0 - 0 = 0,$$
(5.25)

because f is compactly supported in U. It follows from the Fubini Theorem that

$$\int_{U} \frac{\partial f_i}{\partial x_i} = 0. \tag{5.26}$$

Now we prove the other direction, that (1) implies (2). Before our proof we make some remarks about functions of one variable.

Suppose $I = (a, b) \subseteq \mathbb{R}$, and let $g \in \mathcal{C}_0^{\infty}(I)$ such that supp $g \subseteq [c, d]$, where a < c < d < b. Also assume that

$$\int_{a}^{b} g(s)ds = 0.$$
 (5.27)

Define

$$h(x) = \int_{a}^{x} g(s)ds, \qquad (5.28)$$

where $a \leq x \leq b$.

Claim. The function h is also supported on c, d.

Proof. If x > d, then we can write

$$h(x) = \int_{a}^{b} g(s)ds - \int_{x}^{b} g(s)ds,$$
(5.29)

where the first integral is zero by assumption, and the second integral is zero because the integrand is zero. $\hfill \Box$

Now we begin our proof that (1) implies (2). Let $\omega \in \Omega^n(U)$, where U = Q, and assume that

$$\int_{U} \omega = 0. \tag{5.30}$$

We will use the following inductive lemma:

Lemma 5.8. For all $0 \le k \le n+1$, there exists $\mu \in \Omega_c^{n-1}(U)$ and $f \in \mathcal{C}_0^{\infty}(U)$ such that

$$\omega = d\mu + f dx_1 \wedge \dots \wedge dx_n \tag{5.31}$$

and

$$\int f(x_1, \dots, x_n) dx_k \dots dx_n = 0.$$
(5.32)

Note that the hypothesis for k = 0 and $\mu = 0$ says that $\int \omega = 0$, which is our assumption (1). Also note that the hypothesis for k = n + 1, f = 0, and $\omega = d\mu$ is the same as the statement (2). So, if we can show that (the lemma is true for k) implies (the lemma is true for k + 1), then we will have shown that (1) implies (2) in Poincare's Lemma. We now show this.

Assume that the lemma is true for k. That is, we have

$$\omega = d\mu + f dx_1 \wedge \dots \wedge dx_n \tag{5.33}$$

and

$$\int f(x_1, \dots, x_n) dx_k \dots dx_n = 0, \qquad (5.34)$$

where $\mu \in \Omega_c^{n-1}(U)$, and $f \in \mathcal{C}_0^{\infty}(\mathbb{R})$.

We can assume that μ and f are supported on Int Q', where $Q' \subseteq$ Int Q and $Q' = [c_1, d_1] \times \cdots \times [c_n, d_n].$

Define

$$g(x_1, \dots, x_k) = \int f(x_1, \dots, x_n) d_{k+1} \dots dx_n.$$
 (5.35)

Note that g is supported on the interior of $[c_1, d_1] \times \cdots \times [c_k, d_k]$. Also note that

$$\int_{a_k}^{b_k} g(x_1, \dots, x_{k-1}, s) ds = \int f(x_1, \dots, x_n) dx_k \dots dx_n = 0$$
(5.36)

by our assumption that the lemma holds true for k.

Now, define

$$h(x_1, \dots, x_k) = \int_{a_k}^{x_k} g(x_1, \dots, x_{k-1}, s) ds.$$
 (5.37)

From our earlier remark about functions of one variable, h is supported on $c_k \leq x_k \leq d_k$. Also, note that h is supported on $c_i \leq x_i \leq d_i$, for $1 \leq i \leq k - 1$. We conclude therefore that h is also supported on $[c_1, d_1] \times \cdots \times [c_k, d_k]$.

Both g and its "anti-derivative" are supported.

$$\frac{\partial h}{\partial x_k} = g. \tag{5.38}$$

Let $\ell = n - k$, and consider $\rho = \rho(x_{k+1}, \ldots, x_n) \in \mathcal{C}_0^{\infty}(\mathbb{R}^{\ell})$. Assume that ρ is supported on the rectangle $[c_{k+1}, d_{k+1}] \times \cdots \times [c_n, d_n]$ and that

$$\int \rho dx_{k+1} \dots dx_n = 1. \tag{5.39}$$

We can always find such a function, so we just fix one such function.

Define

$$\nu = (-1)^k h(x_1, \dots, x_k) \rho(x_{k+1}, \dots, x_n) dx_1 \wedge \dots \wedge \widehat{dx_k} \wedge \dots \wedge dx_n.$$
(5.40)

The form ν is supported on $Q' = [c_1, d_1] \times \cdots \times [c_n, d_n].$ Now we compute $d\nu$,

$$d\nu = (-1)^k \sum_j \frac{\partial}{\partial x_j} (h\rho) dx_j \wedge dx_1 \wedge \dots \wedge \widehat{dx_k} \wedge \dots \wedge dx_n.$$
 (5.41)

Note that if $j \neq k$, then the summand is zero, so

$$d\nu = (-1)^k \frac{\partial h}{\partial x_k} \rho dx_k \wedge dx_1 \wedge \dots \wedge \widehat{dx_k} \wedge \dots \wedge dx_n$$

= $(-1) \frac{\partial h}{\partial x_k} \rho dx_1 \wedge \dots \wedge dx_n$
= $-g\rho dx_1 \wedge \dots \wedge dx_n.$ (5.42)

Now, define

$$\mu_{new} = \mu - \nu, \tag{5.43}$$

and

$$f_{new} = f(x_1, \dots, x_n) - g(x_1, \dots, x_k)\rho(x_{k+1}, \dots, x_n).$$
(5.44)

$$\omega = d\mu_{new} + f_{new} dx_1 \wedge \dots \wedge dx_n$$

= $d\mu + (g(x_1, \dots, x_k)\rho(x_{k+1}, \dots, x_n) - f(x_1, \dots, x_k) - g\rho)dx_1 \wedge \dots \wedge dx_n$
= $d\mu + f dx_1 \wedge \dots \wedge dx_n$
= ω . (5.45)

Note that

$$\int f_{new} = \int f_{new}(x_1, \dots, x_n) dx_{k+1} \dots dx_n$$

$$= \int f(x_1, \dots, x_n) dx_{k+1} \dots dx_n$$

$$- g(x_1, \dots, x_k) \int \rho(x_{k+1}, \dots, x_n) dx_{k+1} \dots dx_n$$

$$= g(x_1, \dots, x_k) - g(x_1, \dots, x_k) = 0,$$
that the lemma is true for $k + 1$.

which implies that the lemma is true for k + 1.

Remark. In the above proof, we implicitly assumed that if $f \in \mathcal{C}_0^{\infty}(\mathbb{R}^n)$, then

$$g(x_1,\ldots,x_k) = \int f(x_1,\ldots,x_n) dx_{k+1}\ldots dx_m$$
(5.47)

is in $\mathcal{C}_0^{\infty}(\mathbb{R}^k)$. We checked the support, but we did not check that g is in $\mathcal{C}^{\infty}(\mathbb{R}^k)$. The proof of this is in the Supplementary Notes.