Lecture 21

Let V, W be vector spaces, and let $A: V \rightarrow W$ be a linear map. We defined the pullback operation $A^{*}: W^{*} \rightarrow V^{*}$. Last time we defined another pullback operator having the form $A^{*}: \Lambda^{k}\left(W^{*}\right) \rightarrow \Lambda^{k}\left(V^{*}\right)$. This new pullback operator has the following properties:

1. A^{*} is linear.
2. If $\omega_{i} \in \Lambda^{k_{1}}\left(W^{*}\right), i=1,2$, then $A^{*} \omega_{1} \wedge \omega_{2}=A^{*} \omega_{1} \wedge \omega_{2}$.
3. If ω is decomposable, that is if $\omega=\ell_{1} \wedge \cdots \wedge \ell_{k}$ where $\ell_{i} \in W^{*}$, then $A^{*} \omega=$ $A^{*} \ell_{1} \wedge \cdots \wedge A^{*} \ell_{k}$.
4. Suppose that U is a vector space and that $B: W \rightarrow U$ is a linear map. Then, for every $\omega \in \Lambda^{k}\left(U^{*}\right), A^{*} B^{*} \omega=(B A)^{*} \omega$.

4.7 Determinant

Today we focus on the pullback operation in the special case where $\operatorname{dim} V=n$. So, we are studying $\Lambda^{n}\left(V^{*}\right)$, which is called the nth exterior power of V.

Note that $\operatorname{dim} \Lambda^{n}\left(V^{*}\right)=1$.
Given a linear map $A: V \rightarrow V$, what is the pullback operator

$$
\begin{equation*}
A^{*}: \Lambda^{n}\left(V^{*}\right) \rightarrow \Lambda^{n}\left(V^{*}\right) ? \tag{4.129}
\end{equation*}
$$

Since it is a linear map from a one dimensional vector space to a one dimensional vector space, the pullback operator A^{*} is simply multiplication by some constant λ_{A}. That is, for all $\omega \in \Lambda^{n}\left(V^{*}\right), A^{*} \omega=\lambda_{A} \omega$.

Definition 4.32. The determinant of A is

$$
\begin{equation*}
\operatorname{det}(A)=\lambda_{A} \tag{4.130}
\end{equation*}
$$

The determinant has the following properties:

1. If $A=I$ is the identity map, then $\operatorname{det}(A)=\operatorname{det}(I)=1$.
2. If A, B are linear maps of V into V, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Proof: Let $\omega \in \Lambda^{n}\left(V^{*}\right)$. Then

$$
\begin{align*}
(A B)^{*} \omega & =\operatorname{det}(A B) \omega \\
& =B^{*}\left(A^{*} \omega\right) \tag{4.131}\\
& =B^{*}(\operatorname{det} A) \omega \\
& =\operatorname{det}(A) \operatorname{det}(B) \omega .
\end{align*}
$$

3. If A is onto, then $\operatorname{det}(A) \neq 0$.

Proof: Suppose that $A: V \rightarrow V$ is onto. Then there exists an inverse linear map $A^{-1}: V \rightarrow V$ such that $A A^{-1}=I$. So, $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$.
4. If A is not onto, then $\operatorname{det}(A)=0$.

Proof: Let $W=\operatorname{Im}(A)$. If A is not onto, then $\operatorname{dim} W<\operatorname{dim} V$. Let $B: V \rightarrow W$ be the map A regarded as a map of V into W, and let $\iota_{W}: W \rightarrow V$ be inclusion. So, $A=\iota_{W} B$. For all $\omega \in \Lambda^{n}\left(V^{*}\right), A^{*} \omega=B^{*} \iota_{W}^{*} \omega$. Note that $\iota_{W}^{*} \omega \in \Lambda^{n}\left(W^{*}\right)=\{0\}$ because $\operatorname{dim} W<n$. So, $A^{*} \omega=B^{*} \iota_{W}^{*}=0$, which shows that $\operatorname{det}(A)=0$.
Let W, V be n-dimensional vector spaces, and let $A: V \rightarrow W$ be a linear map. We have the bases

$$
\begin{align*}
& e_{1}, \ldots, e_{n} \text { basis of } V \tag{4.132}\\
& e_{1}^{*}, \ldots, e_{n}^{*} \text { dual basis of } V^{*}, \tag{4.133}\\
& f_{1}, \ldots, f_{n} \text { basis of } W \tag{4.134}\\
& f_{1}^{*}, \ldots, f_{n}^{*} \text { dual basis of } W^{*} . \tag{4.135}
\end{align*}
$$

We can write $A e_{i}=\sum a_{i j} f_{j}$, so that A has the associated matrix $A \sim\left[a_{i j}\right]$. Then $A^{*} f_{j}^{*}=\sum a_{j k} e_{k}^{*}$. Take $\omega=f_{1}^{*} \wedge \cdots \wedge f_{n}^{*} \in \Lambda^{n}\left(W^{*}\right)$, which is a basis vector of $\Lambda^{n}\left(W^{*}\right)$. Let us compute its pullback:

$$
\begin{align*}
A^{*}\left(f_{1}^{*} \wedge \cdots \wedge f_{n}^{*}\right) & =\left(\sum_{k_{1}=1}^{n} a_{1, k_{1}} e_{k_{1}}^{*}\right) \wedge \cdots \wedge\left(\sum_{k_{n}=1}^{n} a_{n, k_{n}} e_{k_{n}}^{*}\right) \tag{4.136}\\
& =\sum_{k_{1}, \ldots, k_{n}}\left(a_{1, k_{1}} \ldots a_{m, k_{n}}\right) e_{k_{1}}^{*} \wedge \cdots \wedge e_{k_{n}}^{*} .
\end{align*}
$$

Note that if $k_{r}=k_{s}$, where $r \neq s$, then $e_{k_{1}}^{*} \wedge \cdots \wedge e_{k_{n}}^{*}=0$. If there are no repetitions, then there exists $\sigma \in S_{n}$ such that $k_{i}=\sigma(i)$. Thus,

$$
\begin{align*}
A^{*}\left(f_{1}^{*} \wedge \cdots \wedge f_{n}^{*}\right) & =\sum_{\sigma} a_{1, \sigma(1)} \ldots a_{n, \sigma(n)} e_{\sigma(1)}^{*} \wedge \cdots \wedge e_{\sigma(n)}^{*} \\
& =\left(\sum_{\sigma}(-1)^{\sigma} a_{1, \sigma(1)} \ldots a_{n, \sigma(n)}\right) e_{1}^{*} \wedge \cdots \wedge e_{n}^{*} \tag{4.137}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\operatorname{det}\left[a_{i j}\right]=\sum_{\sigma}(-1)^{\sigma} a_{1, \sigma(1)} \ldots a_{n, \sigma(n)} \tag{4.138}
\end{equation*}
$$

In the case where $W=V$ and each $e_{i}=f_{i}$, we set $\omega=e_{1}^{*} \wedge \cdots \wedge e_{n}^{*}$, and we get $A^{*} \omega=\operatorname{det}\left[a_{i j}\right] \omega$. So, $\operatorname{det}(A)=\operatorname{det}\left[a_{i j}\right]$.

For basic facts about determinants, see Munkres section 2. We will use these results quite a lot in future lectures. We list some of the basic results below.

Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix.

1. $\operatorname{det}(A)=\operatorname{det}\left(A^{t}\right)$. You should prove this as an exercise. You should explain the following steps:

$$
\begin{align*}
\operatorname{det}(A) & =\sum_{\sigma}(-1)^{\sigma} a_{1, \sigma(1)} \ldots a_{n, \sigma(n)} \\
& =\sum_{\tau}(-1)^{\tau} a_{\tau(1), 1} \ldots a_{\tau(n), n}, \text { where } \tau=\sigma^{-1} \tag{4.139}\\
& =\operatorname{det}\left(A^{t}\right) .
\end{align*}
$$

2. Let

$$
A=\left[\begin{array}{ll}
B & C \tag{4.140}\\
0 & D
\end{array}\right]
$$

where B is $k \times k, C$ is $k \times \ell, D$ is $\ell \times \ell$, and $n=k+\ell$. Then

$$
\begin{equation*}
\operatorname{det}(A)=\operatorname{det}(B) \operatorname{det}(D) \tag{4.141}
\end{equation*}
$$

4.8 Orientations of Vector Spaces

Let $\ell \subseteq \mathbb{R}^{2}$ be a line through the origin. Then $\ell-\{0\}$ has two connected components. An orientation of ℓ is a choice of one of these components.

More generally, given a one-dimensional vector space \mathbb{L}, the set \mathbb{L} has two connected components. Choose $v \in \mathbb{L}-\{0\}$. Then the two components are

$$
\begin{equation*}
\left\{\lambda v: \lambda \in \mathbb{R}_{+}\right\} \text {and }\left\{-\lambda v: \lambda \in \mathbb{R}_{+}\right\} . \tag{4.142}
\end{equation*}
$$

Definition 4.33. An orientation of \mathbb{L} is a choice of one of these components, usually labeled \mathbb{L}_{+}. We define

$$
\begin{equation*}
v \in \mathbb{L}_{+} \Longleftrightarrow v \text { is positively oriented. } \tag{4.143}
\end{equation*}
$$

Let V be an n-dimensional vector space. Then $\Lambda^{n}\left(V^{*}\right)$ is a 1 -dimensional vector space.

Definition 4.34. An orientation of V is an orientation of $\Lambda^{n}\left(V^{*}\right)$. That is, a choice of $\Lambda^{n}\left(V^{*}\right)_{+}$.

Suppose e_{1}, \ldots, e_{n} is a basis of V, so $e_{1}^{*}, \ldots, e_{n}^{*}$ is the dual basis of V^{*}. Let $\omega=e_{1}^{*} \wedge \cdots \wedge e_{n}^{*} \in \Lambda^{n}\left(V^{*}\right)-\{0\}$.
Definition 4.35. The basis e_{1}, \ldots, e_{n} is positively oriented if $\omega \in \Lambda^{n}\left(V^{*}\right)_{+}$.
Let f_{1}, \ldots, f_{n} be another basis of V and $f_{1}^{*}, \ldots, f_{n}^{*}$ its dual basis. Let $w^{\prime}=$ $f_{1}^{*} \wedge \cdots \wedge f_{n}^{*}$. We ask: How is ω^{\prime} related to ω ? The answer: If $f_{j}=\sum a_{i j} e_{i}$, then $\omega^{\prime}=\operatorname{det}\left[a_{i j}\right] \omega$. So, if e_{1}, \ldots, e_{n} is positively oriented, then f_{1}, \ldots, f_{n} is positively oriented if and only if $\operatorname{det}\left[a_{i j}\right]>0$.

Suppose V is an n-dimensional vector space and that W is a k-dimensional subspace of V.

Claim. If V and V / W are given orientations, then W acquires from these orientations a natural subspace orientation.

Idea of proof: Let $\pi: V \rightarrow V / W$ be the canonical map, and choose a basis e_{1}, \ldots, e_{n} of V such that $e_{\ell+1}, \ldots, e_{n}$ is a basis of W and such that $\pi\left(e_{1}\right), \ldots, \pi\left(e_{\ell}\right)$ is a basis of V / W, where $\ell=n-k$.

Replacing e_{1} by $-e_{1}$ if necessary, we can assume that $\pi\left(e_{1}\right), \ldots, \pi\left(e_{\ell}\right)$ is an oriented basis of V / W. Replacing e_{n} by $-e_{n}$ if necessary, we can assume that e_{1}, \ldots, e_{n} is an oriented basis of V. Now, give W the orientation for which $e_{\ell+1}, \ldots, e_{n}$ is an oriented basis of W. One should check that this choice of orientation for W is independent of the choice of basis (this is explained in the Multi-linear Algebra notes).

