Lecture 21

Let V, W be vector spaces, and let $A : V \to W$ be a linear map. We defined the pullback operation $A^* : W^* \to V^*$. Last time we defined another pullback operator having the form $A^* : \Lambda^k(W^*) \to \Lambda^k(V^*)$. This new pullback operator has the following properties:

- 1. A^* is linear.
- 2. If $\omega_i \in \Lambda^{k_1}(W^*)$, i = 1, 2, then $A^*\omega_1 \wedge \omega_2 = A^*\omega_1 \wedge \omega_2$.
- 3. If ω is decomposable, that is if $\omega = \ell_1 \wedge \cdots \wedge \ell_k$ where $\ell_i \in W^*$, then $A^*\omega = A^*\ell_1 \wedge \cdots \wedge A^*\ell_k$.
- 4. Suppose that U is a vector space and that $B: W \to U$ is a linear map. Then, for every $\omega \in \Lambda^k(U^*)$, $A^*B^*\omega = (BA)^*\omega$.

4.7 Determinant

Today we focus on the pullback operation in the special case where dim V = n. So, we are studying $\Lambda^n(V^*)$, which is called the *n*th exterior power of V.

Note that $\dim \Lambda^n(V^*) = 1$.

Given a linear map $A: V \to V$, what is the pullback operator

$$A^*: \Lambda^n(V^*) \to \Lambda^n(V^*)? \tag{4.129}$$

Since it is a linear map from a one dimensional vector space to a one dimensional vector space, the pullback operator A^* is simply multiplication by some constant λ_A . That is, for all $\omega \in \Lambda^n(V^*)$, $A^*\omega = \lambda_A \omega$.

Definition 4.32. The determinant of A is

$$\det(A) = \lambda_A. \tag{4.130}$$

The determinant has the following properties:

- 1. If A = I is the identity map, then det(A) = det(I) = 1.
- 2. If A, B are linear maps of V into V, then det(AB) = det(A) det(B). Proof: Let $\omega \in \Lambda^n(V^*)$. Then

$$(AB)^* \omega = \det(AB)\omega$$

= $B^*(A^*\omega)$
= $B^*(\det A)\omega$
= $\det(A)\det(B)\omega.$ (4.131)

3. If A is onto, then $det(A) \neq 0$.

Proof: Suppose that $A: V \to V$ is onto. Then there exists an inverse linear map $A^{-1}: V \to V$ such that $AA^{-1} = I$. So, $\det(A) \det(A^{-1}) = 1$.

4. If A is not onto, then det(A) = 0.

Proof: Let W = Im(A). If A is not onto, then dim $W < \dim V$. Let $B: V \to W$ be the map A regarded as a map of V into W, and let $\iota_W : W \to V$ be inclusion. So, $A = \iota_W B$. For all $\omega \in \Lambda^n(V^*)$, $A^*\omega = B^*\iota_W^*\omega$. Note that $\iota_W^*\omega \in \Lambda^n(W^*) = \{0\}$ because dim W < n. So, $A^*\omega = B^*\iota_W^* = 0$, which shows that det(A) = 0.

Let W, V be *n*-dimensional vector spaces, and let $A : V \to W$ be a linear map. We have the bases

$$e_1, \dots, e_n$$
 basis of V , (4.132)

$$e_1^*, \dots, e_n^*$$
 dual basis of V^* , (4.133)

$$f_1, \dots, f_n$$
 basis of W , (4.134)

 $f_1^*, \dots, f_n^* \text{ dual basis of } W^*. \tag{4.135}$

We can write $Ae_i = \sum a_{ij}f_j$, so that A has the associated matrix $A \sim [a_{ij}]$. Then $A^*f_j^* = \sum a_{jk}e_k^*$. Take $\omega = f_1^* \wedge \cdots \wedge f_n^* \in \Lambda^n(W^*)$, which is a basis vector of $\Lambda^n(W^*)$. Let us compute its pullback:

$$A^{*}(f_{1}^{*} \wedge \dots \wedge f_{n}^{*}) = \left(\sum_{k_{1}=1}^{n} a_{1,k_{1}} e_{k_{1}}^{*}\right) \wedge \dots \wedge \left(\sum_{k_{n}=1}^{n} a_{n,k_{n}} e_{k_{n}}^{*}\right)$$

$$= \sum_{k_{1},\dots,k_{n}} (a_{1,k_{1}}\dots a_{m,k_{n}}) e_{k_{1}}^{*} \wedge \dots \wedge e_{k_{n}}^{*}.$$
(4.136)

Note that if $k_r = k_s$, where $r \neq s$, then $e_{k_1}^* \wedge \cdots \wedge e_{k_n}^* = 0$. If there are no repetitions, then there exists $\sigma \in S_n$ such that $k_i = \sigma(i)$. Thus,

$$A^*(f_1^* \wedge \dots \wedge f_n^*) = \sum_{\sigma} a_{1,\sigma(1)} \dots a_{n,\sigma(n)} e_{\sigma(1)}^* \wedge \dots \wedge e_{\sigma(n)}^*$$

$$= \left(\sum_{\sigma} (-1)^{\sigma} a_{1,\sigma(1)} \dots a_{n,\sigma(n)}\right) e_1^* \wedge \dots \wedge e_n^*.$$
(4.137)

Therefore,

$$\det[a_{ij}] = \sum_{\sigma} (-1)^{\sigma} a_{1,\sigma(1)} \dots a_{n,\sigma(n)}.$$
 (4.138)

In the case where W = V and each $e_i = f_i$, we set $\omega = e_1^* \wedge \cdots \wedge e_n^*$, and we get $A^*\omega = \det[a_{ij}]\omega$. So, $\det(A) = \det[a_{ij}]$.

For basic facts about determinants, see Munkres section 2. We will use these results quite a lot in future lectures. We list some of the basic results below.

Let $A = [a_{ij}]$ be an $n \times n$ matrix.

1. $det(A) = det(A^t)$. You should prove this as an exercise. You should explain the following steps:

$$\det(A) = \sum_{\sigma} (-1)^{\sigma} a_{1,\sigma(1)} \dots a_{n,\sigma(n)}$$

= $\sum_{\tau} (-1)^{\tau} a_{\tau(1),1} \dots a_{\tau(n),n}$, where $\tau = \sigma^{-1}$ (4.139)
= $\det(A^t)$.

2. Let

$$A = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix}, \tag{4.140}$$

where B is $k \times k$, C is $k \times \ell$, D is $\ell \times \ell$, and $n = k + \ell$. Then

$$\det(A) = \det(B)\det(D) \tag{4.141}$$

4.8 Orientations of Vector Spaces

Let $\ell \subseteq \mathbb{R}^2$ be a line through the origin. Then $\ell - \{0\}$ has two connected components. An *orientation* of ℓ is a choice of one of these components.

More generally, given a one-dimensional vector space \mathbb{L} , the set \mathbb{L} has two connected components. Choose $v \in \mathbb{L} - \{0\}$. Then the two components are

$$\{\lambda v : \lambda \in \mathbb{R}_+\} \text{ and } \{-\lambda v : \lambda \in \mathbb{R}_+\}.$$
 (4.142)

Definition 4.33. An *orientation of* \mathbb{L} is a choice of one of these components, usually labeled \mathbb{L}_+ . We define

$$v \in \mathbb{L}_+ \iff v \text{ is positively oriented.}$$
 (4.143)

Let V be an n-dimensional vector space. Then $\Lambda^n(V^*)$ is a 1-dimensional vector space.

Definition 4.34. An orientation of V is an orientation of $\Lambda^n(V^*)$. That is, a choice of $\Lambda^n(V^*)_+$.

Suppose e_1, \ldots, e_n is a basis of V, so e_1^*, \ldots, e_n^* is the dual basis of V^* . Let $\omega = e_1^* \wedge \cdots \wedge e_n^* \in \Lambda^n(V^*) - \{0\}.$

Definition 4.35. The basis e_1, \ldots, e_n is positively oriented if $\omega \in \Lambda^n(V^*)_+$.

Let f_1, \ldots, f_n be another basis of V and f_1^*, \ldots, f_n^* its dual basis. Let $w' = f_1^* \wedge \cdots \wedge f_n^*$. We ask: How is ω' related to ω ? The answer: If $f_j = \sum a_{ij}e_i$, then $\omega' = \det[a_{ij}]\omega$. So, if e_1, \ldots, e_n is positively oriented, then f_1, \ldots, f_n is positively oriented if and only if $\det[a_{ij}] > 0$.

Suppose V is an n-dimensional vector space and that W is a k-dimensional subspace of V.

Claim. If V and V/W are given orientations, then W acquires from these orientations a natural subspace orientation.

Idea of proof: Let $\pi: V \to V/W$ be the canonical map, and choose a basis e_1, \ldots, e_n of V such that $e_{\ell+1}, \ldots, e_n$ is a basis of W and such that $\pi(e_1), \ldots, \pi(e_\ell)$ is a basis of V/W, where $\ell = n - k$.

Replacing e_1 by $-e_1$ if necessary, we can assume that $\pi(e_1), \ldots, \pi(e_\ell)$ is an oriented basis of V/W. Replacing e_n by $-e_n$ if necessary, we can assume that e_1, \ldots, e_n is an oriented basis of V. Now, give W the orientation for which $e_{\ell+1}, \ldots, e_n$ is an oriented basis of W. One should check that this choice of orientation for W is independent of the choice of basis (this is explained in the Multi-linear Algebra notes). \Box