Lecture 16

4 Multi-linear Algebra

4.1 Review of Linear Algebra and Topology

In today's lecture we review chapters 1 and 2 of Munkres. Our ultimate goal (not today) is to develop vector calculus in n dimensions (for example, the generalizations of grad, div, and curl).

Let V be a vector space, and let $v_{i} \in V, i=1, \ldots, k$.

1. The $v_{i}^{\prime} s$ are linearly independent if the map from \mathbb{R}^{k} to V mapping $\left(c_{1}, \ldots, c_{k}\right)$ to $c_{1} v_{1}+\ldots+c_{k} v_{k}$ is injective.
2. The $v_{i}^{\prime} s$ span V if this map is surjective (onto).
3. If the $v_{i}^{\prime} s$ form a basis, then $\operatorname{dim} V=k$.
4. A subset W of V is a subspace if it is also a vector space.
5. Let V and W be vector spaces. A map $A: V \rightarrow W$ is linear if $A\left(c_{1} v_{1}+c_{2} v_{2}\right)=$ $c_{1} A\left(v_{1}\right)+c_{2} A\left(v_{2}\right)$.
6. The kernel of a linear map $A: V \rightarrow W$ is

$$
\begin{equation*}
\operatorname{ker} A=\{v \in V: A v=0\} . \tag{4.1}
\end{equation*}
$$

7. The image of A is

$$
\begin{equation*}
\operatorname{Im} A=\{A v: v \in V\} \tag{4.2}
\end{equation*}
$$

8. The following is a basic identity:

$$
\begin{equation*}
\operatorname{dim} \operatorname{ker} A+\operatorname{dim} \operatorname{Im} A=\operatorname{dim} V \tag{4.3}
\end{equation*}
$$

9. We can associate linear mappings with matrices. Let v_{1}, \ldots, v_{n} be a basis for V, and let w_{1}, \ldots, w_{m} be a basis for W. Let

$$
\begin{equation*}
A v_{j}=\sum_{i=1}^{m} a_{i j} w_{j} \tag{4.4}
\end{equation*}
$$

Then we associate the linear map A with the matrix $\left[a_{i j}\right]$. We write this $A \sim$ $\left[a_{i j}\right]$.
10. If v_{1}, \ldots, v_{n} is a basis for V and $u_{j}=\sum a_{i j} w_{j}$ are n arbitrary vectors in W, then there exists a unique linear mapping $A: V \rightarrow W$ such that $A v_{j}=u_{j}$.
11. Know all the material in Munkres section $\oint 2$ on matrices and determinants.
12. The quotient space construction. Let V be a vector space and W a subspace. Take any $v \in V$. We define $v+W \equiv\{v+w: w \in W\}$. Sets of this form are called W-cosets. One can check that given $v_{1}+W$ and $v_{2}+W$,
(a) If $v_{1}-v_{2} \in W$, then $v_{1}+W=v_{2}+W$.
(b) If $v_{1}-v_{2} \notin W$, then $\left(v_{1}+W\right) \cap\left(v_{2}+W\right)=\phi$.

So every vector $v \in V$ belongs to a unique W-coset.
The quotient space V / W is the set of all $W=$ cosets.
For example, let $V=\mathbb{R}^{2}$, and let $W=\{(a, 0): a \in \mathbb{R}\}$. The W-cosets are then vertical lines.
The set V / W is a vector space. It satisfies vector addition: $\left(v_{1}+W\right)+\left(v_{2}+W\right)=$ $\left(v_{1}+v_{2}\right)+W$. It also satisfies scaler multiplication: $\lambda(v+W)=\lambda v+W$. You should check that the standard axioms for vector spaces are satisfied.

There is a natural projection from V to V / W :

$$
\begin{equation*}
\pi: V \rightarrow V / W, v \rightarrow v+W \tag{4.5}
\end{equation*}
$$

The map π is a linear map, it is surjective, and $\operatorname{ker} \pi=W$. Also, $\operatorname{Im} \pi=V / W$, so

$$
\begin{align*}
\operatorname{dim} V / W & =\operatorname{dim} \operatorname{Im} \pi \\
& =\operatorname{dim} V-\operatorname{dim} \operatorname{ker} \pi \tag{4.6}\\
& =\operatorname{dim} V-\operatorname{dim} W
\end{align*}
$$

4.2 Dual Space

13. The dual space construction: Let V be an n-dimensional vector space. Define V^{*} to be the set of all linear functions $\ell: V \rightarrow \mathbb{R}$. Note that if $\ell_{1}, \ell_{2} \in V^{*}$ and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$, then $\lambda_{1} \ell_{1}+\lambda_{2} \ell_{2} \in V^{*}$, so V^{*} is a vector space.
What does V^{*} look like? Let e_{1}, \ldots, e_{n} be a basis of V. By item (9), there exists a unique linear map $e_{i}^{*} \in V^{*}$ such that

$$
\left\{\begin{array}{l}
e_{i}^{*}\left(e_{i}\right)=1, \\
e_{i}^{*}\left(e_{j}\right)=0, \text { if } j \neq i .
\end{array}\right.
$$

Claim. The set of vectors $e_{1}^{*}, \ldots, e_{n}^{*}$ is a basis of V^{*}.
Proof. Suppose $\ell=\sum c_{i} e_{i}^{*}=0$. Then $0=\ell\left(e_{j}\right)=\sum c_{i} e_{i}^{*}\left(e_{j}\right)=c_{j}$, so $c_{1}=$ $\ldots=c_{n}=0$. This proves that the vectors e_{i}^{*} are linearly independent. Now, if $\ell \in V^{*}$ and $\ell\left(e_{i}\right)=c_{j}$ one can check that $\ell=\sum c_{i} e_{i}^{*}$. This proves that the vectors e_{i}^{*} span V^{*}.

The vectors $e_{1}^{*}, \ldots, e_{n}^{*}$ are said to be a basis of V^{*} dual to e_{1}, \ldots, e_{n}.
Note that $\operatorname{dim} V^{*}=\operatorname{dim} V$.
Suppose that we have a pair of vectors spaces V, W and a linear map $A: V \rightarrow$ W. We get another map

$$
\begin{equation*}
A^{*}: W^{*} \rightarrow V^{*} \tag{4.7}
\end{equation*}
$$

defined by $A^{*} \ell=\ell \circ A$, where $\ell \in W^{*}$ is a linear map $\ell: W \rightarrow \mathbb{R}$. So $A^{*} \ell$ is a linear map $A^{*} \ell: V \rightarrow \mathbb{R}$. You can check that $A^{*}: W^{*} \rightarrow V^{*}$ is linear.

We look at the matrix description of A^{*}. Define the following bases:

$$
\begin{align*}
& e_{1}, \ldots, e_{n} \text { a basis of } V \tag{4.8}\\
& f_{1}, \ldots, f_{n} \text { a basis of } W \tag{4.9}\\
& e_{1}^{*}, \ldots, e_{n}^{*} \text { a basis of } V^{*} \tag{4.10}\\
& f_{1}^{*}, \ldots, f_{n}^{*} \text { a basis of } W^{*} . \tag{4.11}
\end{align*}
$$

Then

$$
\begin{align*}
A^{*} f_{j}^{*}\left(e_{i}\right) & =f_{j}^{*}\left(A e_{i}\right) \\
& =f_{j}^{*}\left(\sum_{k} a_{k i} f_{k}\right) \tag{4.12}\\
& =a_{j i}
\end{align*}
$$

So,

$$
\begin{equation*}
A^{*} f_{j}=\sum_{k} a_{j k} e_{k}^{*}, \tag{4.13}
\end{equation*}
$$

which shows that $A^{*} \sim\left[a_{j i}\right]=\left[a_{i j}\right]^{t}$, the transpose of A.

