Lecture 10

We begin today's lecture with a simple claim.
Claim. Let $Q \subseteq \mathbb{R}^{n}$ be a rectangle and $f, g: Q \rightarrow \mathbb{R}$ be bounded functions such that $f \leq g$. Then

$$
\begin{equation*}
\int_{Q} f \leq{\underline{\int_{Q}}} g . \tag{3.49}
\end{equation*}
$$

Proof. Let P be a partition of Q, and let R be a rectangle belonging to P. Clearly, $m_{R}(f) \leq m_{R}(g)$, so

$$
\begin{align*}
L(f, P) & =\sum_{R} m_{R}(f) v(R) \tag{3.50}\\
L(g, P) & =\sum_{R} m_{R}(g) v(R) \tag{3.51}\\
\Longrightarrow L(f, P) & \leq L(g, P) \leq{\underline{\int_{Q}}} g \tag{3.52}
\end{align*}
$$

for all partitions P. The lower integral

$$
\begin{equation*}
\underline{\int}_{Q} f \tag{3.53}
\end{equation*}
$$

is the l.u.b. of $L(f, P)$, so

$$
\begin{equation*}
\underline{\int}_{Q} f \leq \underline{\int}_{Q} g . \tag{3.54}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\bar{\int}_{Q} f \leq \bar{\int}_{Q} g \tag{3.55}
\end{equation*}
$$

It follows that if $f \leq g$, then

$$
\begin{equation*}
\int_{Q} f \leq \int_{Q} g \tag{3.56}
\end{equation*}
$$

This is the monotonicity property of the R. integral.

3.4 Fubini Theorem

In one-dimensional calculus, when we have a continuous function $f:[a, b] \rightarrow \mathbb{R}$, then we can calculate the R. integral

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=F(b)-F(a) \tag{3.57}
\end{equation*}
$$

where F is the anti-derivative of f.
When we integrate a continuous function $f: Q \rightarrow \mathbb{R}$ over a two-dimensional region, say $Q=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$, we can calculate the R. integral

$$
\begin{equation*}
\int_{Q} f=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f(x, y) d x d y=\int_{a_{1}}^{b_{1}}\left(\int_{a_{2}}^{b_{2}} f(x, y) d x d y\right) \tag{3.58}
\end{equation*}
$$

That is, we can break up Q into components and integrate separately over those components. We make this more precise in the following Fubini Theorem.

First, we define some notation that will be used.
Let $n=k+\ell$ so that $\mathbb{R}^{n}=\mathbb{R}^{l} \times \mathbb{R}^{\ell}$. Let $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{R}^{n}$. We can write $c=(a, b)$, where $a=\left(c_{1}, \ldots, c\right) \in \mathbb{R}^{k}$ and $b=\left(c_{k+1}, \ldots, c_{k+\ell}\right) \in \mathbb{R}^{\ell}$. Similarly, let $Q=I_{1} \times \cdots I_{n}$ be a rectangle in \mathbb{R}^{n}. Then we can write $Q=A \times B$, where $A=I_{1} \times \cdots \times I_{k} \in \mathbb{R}^{k}$ and $B=I_{k+1} \times \cdots \times I_{k+\ell} \in \mathbb{R}^{\ell}$. Along the same lines, we can write a partition $P=\left(P_{1}, \ldots, P_{n}\right)$ as $P=\left(P_{A}, P_{B}\right)$, where $P_{A}=\left(P_{1}, \ldots, P_{k}\right)$ and $P_{B}=\left(P_{k+1}, \ldots, P_{k+\ell}\right)$.

Fubini Theorem. Let $f: Q \rightarrow \mathbb{R}$ be a bounded function and $Q=A \times B$ a rectangle as defined above. We write $f=f(x, y)$, where $x \in A$, and $y \in B$. Fixing $x \in A$, we can define a function $f_{x}: B \rightarrow \mathbb{R}$ by $f_{x}(y)=f(x, y)$. Since this function is bounded, we can define new functions $g, h: A \rightarrow \mathbb{R}$ by

$$
\begin{align*}
& g(x)={\underline{\int_{B}}}_{B} f_{x}, \tag{3.59}\\
& h(x)=\int_{B} f_{x} . \tag{3.60}
\end{align*}
$$

Note that $g \leq h$. The Fubini Theorem concludes the following: If f is integrable over Q, then g and h are integrable over A and

$$
\begin{equation*}
\int_{A} g=\int_{A} h=\int_{Q} f \tag{3.61}
\end{equation*}
$$

Proof. Let $P=\left(P_{A}, P_{B}\right)$ be a partition of Q, and let $R=R_{A} \times R_{B}$ be a rectangle belonging to P (so R_{A} belongs to P_{A} and R_{B} belongs to P_{B}). Fix $x_{0} \in A$.

First, we claim that

$$
\begin{equation*}
m_{R_{A} \times R_{B}}(f) \leq m_{R_{b}}\left(f_{x_{0}}\right), \tag{3.62}
\end{equation*}
$$

the proof of which is straightforward.
Next,

$$
\begin{align*}
\sum_{R_{B}} m_{R_{A} \times R_{B}}(f) v\left(R_{B}\right) & \leq \sum_{R_{B}} m_{R_{B}}\left(f_{x_{0}}\right) v\left(R_{B}\right) \\
& =L\left(f_{x_{0}}, P_{B}\right) \tag{3.63}\\
& \leq \underline{\int}_{B} f_{x_{0}}=g\left(x_{0}\right)
\end{align*}
$$

So,

$$
\begin{equation*}
\sum_{R_{B}} m_{R_{A} \times R_{B}}(f) v\left(R_{B}\right) \leq g\left(x_{0}\right) \tag{3.64}
\end{equation*}
$$

for all $x_{0} \in R_{A}$. The above equation must hold for the infimum of the r.h.s, so

$$
\begin{equation*}
\sum_{R_{B}} m_{R_{A} \times R_{B}}(f) v\left(R_{B}\right) \leq m_{R_{A}}(g) \tag{3.65}
\end{equation*}
$$

Observe that $v\left(R_{A} \times R_{B}\right)=v\left(R_{A}\right) v\left(R_{B}\right)$, so

$$
\begin{align*}
L(f, P) & =\sum_{R_{A} \times R_{B}} m_{R_{A} \times R_{B}}(f) v\left(R_{A} \times R_{B}\right) \\
& \leq \sum_{R_{A}} m_{R_{A}}(g) v\left(R_{A}\right) \tag{3.66}\\
& \leq \int_{A} g .
\end{align*}
$$

We have just shown that for any partition $P=\left(P_{A}, P_{B}\right)$,

$$
\begin{equation*}
L(f, P) \leq L\left(g, P_{A}\right) \leq \underline{\int}_{A} g \tag{3.67}
\end{equation*}
$$

so

$$
\begin{equation*}
{\underline{\int_{Q}}} f \leq{\underline{\int_{A}}}_{A} g \tag{3.68}
\end{equation*}
$$

By a similar argument, we can show that

$$
\begin{equation*}
\bar{\int}_{A} h \leq \bar{\int}_{Q} f \tag{3.69}
\end{equation*}
$$

Summarizing, we have shown that

$$
\begin{equation*}
\underline{\int}_{Q} f \leq{\underline{\int_{A}}}_{A} g \leq \bar{\int}_{A} h \leq \bar{\int}_{Q} f \tag{3.70}
\end{equation*}
$$

where we used monotonicity for the middle inequality. Since f is R. integrable,

$$
\begin{equation*}
{\underline{\int_{Q}}}_{Q} f=\bar{\int}_{Q} f \tag{3.71}
\end{equation*}
$$

so all of the inequalities are in fact equalities.

Remark. Suppose that for every $x \in A$, that $f_{x}: B \rightarrow \mathbb{R}$ is R . integrable. That's the same as saying $g(x)=h(x)$. Then

$$
\begin{align*}
\int_{A}\left(\int_{B} f_{x}\right) & =\int_{A} d x\left(\int_{B} f(x, y) d y\right) \tag{3.72}\\
& =\int_{A \times B} f(x, y) d x d y
\end{align*}
$$

using standard notation from calculus.
Remark. In particular, if f is continuous, then f_{x} is continuous. Hence, the above remark holds for all continuous functions.

3.5 Properties of Riemann Integrals

We now prove some standard calculus results.
Theorem 3.13. Let $Q \subseteq \mathbb{R}^{n}$ be a rectangle, and let $f, g: Q \rightarrow \mathbb{R}$ be R. integrable functions. Then, for all $a, b \in \mathbb{R}$, the function $a f+b g$ is R. integrable and

$$
\begin{equation*}
\int_{Q} a f+b g=a \int_{Q} f+b \int_{Q} g \tag{3.73}
\end{equation*}
$$

Proof. Let's first assume that $a, b \leq 0$. Let P be a partition of Q and R a rectangle belonging to P. Then

$$
\begin{equation*}
a m_{R}(f)+b m_{R}(g) \leq m_{R}(a f+b g), \tag{3.74}
\end{equation*}
$$

so

$$
\begin{align*}
a L(f, P)+b L(g, P) \leq L(a f+b g, P) & \\
& \leq \underline{\int}_{Q} a f+b g . \tag{3.75}
\end{align*}
$$

Claim. For any pair of partitions P^{\prime} and $P^{\prime \prime}$,

$$
\begin{equation*}
a L\left(f, P^{\prime}\right)+b L\left(g, P^{\prime \prime}\right) \leq{\underline{\int_{Q}}} a f+b g \tag{3.76}
\end{equation*}
$$

To see that the claim is true, take P to be a refinement of P^{\prime} and $P^{\prime \prime}$, and apply Equation 3.75. Thus,

$$
\begin{equation*}
a{\underline{\int_{Q}}} f+b{\underline{\int_{Q}}}_{Q} g \leq{\underline{\int_{Q}}} a f+b g \tag{3.77}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{equation*}
\bar{\int}_{Q} a f+b g \leq a \bar{\int}_{Q} f+b \bar{\int}_{Q} g \tag{3.78}
\end{equation*}
$$

Since f and g are R. integrable, we know that

$$
\begin{equation*}
\bar{\int}_{Q} f={\underline{\int_{Q}}}_{Q} f, \bar{\int}_{Q} g={\underline{\int_{Q}}} g \tag{3.79}
\end{equation*}
$$

These equalities show that the previous inequalities were in fact equalities, so

$$
\begin{equation*}
\int_{Q} a f+b g=a \int_{Q} f+b \int_{Q} g \tag{3.80}
\end{equation*}
$$

However, remember that we assumed that $a, b \geq 0$. To deal with the case of arbitrary a, b, it suffices to check what happens when we change the sign of a or b.
Claim.

$$
\begin{equation*}
\int_{Q}-f=-\int_{Q} f \tag{3.81}
\end{equation*}
$$

Proof Hint. Let P be any partition of Q. Then $L(f, P)=-U(-f, P)$.
You should check this claim, and then use it to complete the proof.

