18.100C Lecture 9 Summary

Subsequential limits (accumulation points) of a sequence in a metric space.

Theorem 9.1. The set of accumulation points of any sequence is a closed subset.

Theorem 9.2. Suppose that the metric space (X, d) is separable (has a countable dense subset). Then for every closed nonempty subset $E \subset X$ there is a sequence (x_n) whose set of accumulation points is precisely E. [No proof in class]

Convergence of sequences in \mathbb{R} .

Theorem 9.3. Let (x_n) be a sequence which is nondecreasing, $x_1 \le x_2 \le x_3 \cdots$. Then (x_n) converges if and only if it is bounded above.

Theorem 9.4. $x_n = (1 + 1/n)^n$ converges.

Definition of lim sup and lim inf. Improper limits $\pm \infty$. Convergence of series. Series of nonnegative numbers.

Theorem 9.5. A series of nonnegative numbers converges if and only if its partial sums are bounded above.

Theorem 9.6. $\sum_{k=0}^{\infty} x^p = 1/(1-x)$ for all |x| < 1.

Theorem 9.7. $\sum_{k=1}^{\infty} 1/k^p$ diverges if $p \le 1$, and converges if p > 1.

MIT OpenCourseWare http://ocw.mit.edu

18.100C Real Analysis Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.