18.100C Lecture 8 Summary

Convergent sequences in metric spaces. Examples.

Theorem 8.1. Let (x_n) be a convergent sequence, where all the x_n lie in a subset $E \subset X$. Then the limit x lies in \overline{E} .

Theorem 8.2. If $x \in \overline{E}$, there is a sequence (x_n) , $x_n \in E$, which converges to x.

Subsequence of a convergent sequence is convergent (same limit).

Theorem 8.3. Let (X, d) be a compact metric space. Then every sequence (x_n) in X has a convergent subsequence.

Corollary 8.4. Every bounded sequence in \mathbb{R}^d has a convergent subsequence.

Definition of Cauchy sequence. Every convergent sequence is a Cauchy sequence.

Lemma 8.5. Let (x_n) be a Cauchy sequence. If it has a convergent subsequence, then (x_n) itself converges (to the same point).

Theorem 8.6. Let (X, d) be a compact metric space. Then every Cauchy sequence converges.

Corollary 8.7. Every Cauchy sequence in \mathbb{R}^n converges.

A metric space where this happens (every Cauchy sequence converges) is called complete. So, we just showed that compact metric spaces as well as \mathbb{R}^n are complete. MIT OpenCourseWare http://ocw.mit.edu

18.100C Real Analysis Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.