18.100C Lecture 7 Summary

Theorem 7.1. Let (X, d) be a metric space with the following property: every countably infinite subset $E \subset X$ has a limit point. Then X is compact.

Step 1: show that X has an at most countable dense subset (homework).

Step 2: show that if $(U_i)_{i \in I}$ is an open cover of X, then at most countably many U_i already cover X.

Step 3: show that if $(U_i)_{i \in I}$ is a countable open cover of X, then finitely many U_i already cover X.

Theorem 7.2 (Heine-Borel). Every finite closed interval $[a, b] \subset \mathbb{R}$ is compact (for the standard metric).

Theorem 7.3. Every bounded closed subset of \mathbb{R} is compact.

Theorem 7.4. Every finite closed cube $[a_1, b_1] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$ is compact.

Theorem 7.5. Every bounded closed subset of \mathbb{R}^n is compact.

MIT OpenCourseWare http://ocw.mit.edu

18.100C Real Analysis Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.