18.100C Lecture 6 Summary

Throughout, (X, d) is an arbitrary metric space. Definition of a compact subset $K \subset X$.

Example 6.1. A finite set K is always compact.

Theorem 6.2. If $K \subset X$ is a compact set and $x \in X$ is a point, then $K \subset B_r(x)$ for some r.

Theorem 6.3. If $K \subset X$ is compact, it is also a closed subset.

Theorem 6.4. If $K \subset X$ is compact and $E \subset X$ is closed, $K \cap E$ is again compact.

Theorem 6.5. If $K_1, K_2 \subset X$ are compact, then so is $K_1 \cup K_2$.

Theorem 6.6 ("you can run but you can't hide"). If $K \subset X$ is compact and $E \subset K$ is an infinite subset, then E has a limit point (in K).

Theorem 6.7. $K \subset X$ is a compact subset of X if and only if K itself as a metric space is compact.

"K itself as a metric space is compact" means this: given any cover of K by subsets which are open (as subsets of K), there are finitely many of those subsets which already cover K.

MIT OpenCourseWare http://ocw.mit.edu

18.100C Real Analysis Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.