18.100C Lecture 5 Summary

Throughout, (X, d) is an arbitrary metric space.

Theorem 5.1. If $E, F \subset X$ are open subsets, then so are $E \cup F$ and $E \cap F$.

Theorem 5.2. If (E_i) is a collection of open subsets of X indexed by $i \in I$ for some set I, then their union $\bigcup_{i \in I} E_i$ is also open.

Corollary 5.3. Every open subset is a union of ball neighbourhoods.

Definition of limit point, closed subset.

Theorem 5.4. If x is a limit point of E, then $B_r(x) \cap E$ is infinite for any r > 0.

Corollary 5.5. A finite subset of X has no limit points, hence is closed.

Theorem 5.6. If $E, F \subset X$ are closed subsets, then so are $E \cup F$ and $E \cap F$.

Theorem 5.7. If (E_i) is a collection of closed subsets of X indexed by $i \in I$ for some set I, then their intersection $\bigcap_{i \in I} E_i$ is also closed.

Theorem 5.8. A subset $E \subset X$ is open if and only if its complement $X \setminus E$ is closed.

Definition of closure \overline{E} .

Definition 5.9. A subset $E \subset X$ is called dense if $\overline{E} = X$.

MIT OpenCourseWare http://ocw.mit.edu

18.100C Real Analysis Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.