18.100C Lecture 23 Summary

General discussion of the Taylor series of an (arbitrarily differentiable) function. This can be quite badly behaved - it may not converge; and even if it does, it may not converge to the original function.

Reminder: definition of $\exp(x)$, $\sin(x)$, $\cos(x)$. How to derive their derivatives. Euler's formula $\exp(it) = \cos(t) + i \sin(t)$.

Lemma 23.1. There is a smallest number $\pi > 0$ such that $\cos(\pi/2) = 0$. Moreover, for that number $\sin(\pi/2) = 1$.

Lemma 23.2. $\exp(x + 2\pi i) = \exp(x)$, for all complex numbers x.

Definition of log as inverse function of exp.

Lemma 23.3. $\log(x)$ is differentiable for all x > 0, and its derivative is 1/x.

Theorem 23.4. The series $x - x^2/2 + x^3/3 - x^4/4 + \cdots$ converges to $\log(1+x)$ inside its radius of convergence (which means for |x| < 1).

MIT OpenCourseWare http://ocw.mit.edu

18.100C Real Analysis Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.