18.100C Lecture 21 Summary

Theorem 21.1. If f is RS-integrable and ϕ is continuous (on some closed interval containing all values f(x), $x \in [a, b]$), then $\phi(f)$ is RS-integrable (for the same α).

Corollary 21.2. If f and g are RS-integrable, then fg is RS-integrable (for the same α).

Corollary 21.3. If f is RS-integrable, then |f| is RS-integrable, and $|\int_a^b f d\alpha| \leq \int_a^b |f| d\alpha$.

The following is easy:

Theorem 21.4. Suppose that ϕ is strictly increasing and continuous, and maps [A, B] to [a, b]. Then if $f : [a, b] \to \mathbb{R}$ is RS-integrable for some α , $g = f(\phi) : [A, B] \to \mathbb{R}$ is RS-integrable for $\beta = \alpha(\phi)$, and

$$\int_{a}^{b} f \, d\alpha = \int_{A}^{B} g \, d\beta.$$

But this is hard:

Theorem 21.5. Suppose that α is everywhere differentiable, and α' is Riemannintegrable. Let f be a function which is R-S integrable for α . Then $f(x)\alpha'(x)$ is Riemann-integrable, and

$$\int_{a}^{b} f(x)\alpha'(x) \ dx = \int_{a}^{b} f \ d\alpha.$$

Together they yield the following form of the substitution rule:

Corollary 21.6. Suppose that ϕ is strictly increasing, differentiable, maps [A, B] to [a, b], and that ϕ' is Riemann integrable. Let $f : [a, b] \to \mathbb{R}$ be a Riemann integrable function. Then $f(\phi(x))\phi'(x) : [A, B] \to \mathbb{R}$ is again Riemann integrable, and

$$\int_{A}^{B} f(\phi(x))\phi'(x) \ dx = \int_{a}^{b} f(x) \ dx.$$

18.100C Real Analysis Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.