18.100C Lecture 1 Summary

Sets. Ordered sets. Examples. Ordering pairs of numbers. Largest element (maximum) and smallest element (minimum) of a subset of an ordered set.

Fact 1.1. Every nonempty subset of \mathbb{N} has a least element.

Finite sets. Countable sets.

Theorem 1.2. Any subset of \mathbb{N} is either finite or countable.

Hence, any subset of a countable set is finite or countable.

Theorem 1.3. If S_1 and S_2 are countable, $S_1 \cup S_2$ is countable.

Hence, \mathbb{Z} is countable.

Theorem 1.4. \mathbb{N}^2 is countable.

Corollary 1.5. If S_1 and S_2 are countable, $S_1 \times S_2$ is countable.

Corollary 1.6. If S_1, S_2, \ldots are countable sets, $\bigcup_{k=1}^{\infty} S_k$ is countable.

MIT OpenCourseWare http://ocw.mit.edu

18.100C Real Analysis Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.