18.100C Lecture 1 Summary

Sets. Ordered sets. Examples. Ordering pairs of numbers. Largest element (maximum) and smallest element (minimum) of a subset of an ordered set.

Fact 1.1. Every nonempty subset of \mathbb{N} has a least element.
Finite sets. Countable sets.
Theorem 1.2. Any subset of \mathbb{N} is either finite or countable.
Hence, any subset of a countable set is finite or countable.
Theorem 1.3. If S_{1} and S_{2} are countable, $S_{1} \cup S_{2}$ is countable.
Hence, \mathbb{Z} is countable.
Theorem 1.4. \mathbb{N}^{2} is countable.
Corollary 1.5. If S_{1} and S_{2} are countable, $S_{1} \times S_{2}$ is countable.
Corollary 1.6. If S_{1}, S_{2}, \ldots are countable sets, $\bigcup_{k=1}^{\infty} S_{k}$ is countable.

MIT OpenCourseWare
http://ocw.mit.edu

18.100C Real Analysis

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

