18.100C Lecture 19 Summary

A partition P of $[a, b]$ is given by $a=x_{0}<x_{1}<\cdots<x_{n}=b$, for some n.
Definition 19.1. A function $f:[a, b] \rightarrow \mathbb{R}$ is called piecewise linear if there is a partition P such that f is linear (of the form $c_{i} x+d_{i}$) on each interval $\left[x_{i-1}, x_{i}\right]$.

To get integration theory started, one defines the integral of a piecewise linear function to be

$$
\int_{a}^{b} f(x) d x \stackrel{\text { def }}{=} \sum_{i=1}^{n} \frac{1}{2}\left(f\left(x_{i-1}\right)+f\left(x_{i}\right)\right) \Delta x_{i}
$$

where $\Delta x_{i}=x_{i}-x_{i-1}$. This is the geometric formula for the area of a trapezoid (with sign), added up over i. Again by elementary geometric arguments, the integral of a piecewise linear function is independent of the choice of partition.

Proposition 19.2. (i) If $f(x)=c$ is constant, $\int_{a}^{b} f(x) d x=c(b-a)$.
(ii) Suppose that f, g are piecewise linear functions. Then

$$
\int_{a}^{b} f(x)+g(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

(iii) Suppose that f is a piecewise linear function and c is a constant. Then

$$
\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x
$$

(iv) If a piecewise linear function f satisfies $f(x) \geq 0$ for all $x \in[a, b]$, then $\int_{a}^{b} f(x) d x \geq 0$.

We extend this notion of integral to all continuous functions by uniform convergence.

Lemma 19.3. Any continuous function $f:[a, b] \rightarrow \mathbb{R}$ is the uniform limit of a sequence of piecewise linear functions.

Theorem 19.4. There is a unique way of assigning to each continuous f : $[a, b] \rightarrow \mathbb{R}$ a number $\int_{a}^{b} f(x) d x \in \mathbb{R}$ such that: if f is piecewise linear, then we get back the integral as defined before; and if $f_{n} \rightarrow f$ uniformly, then $\int_{a}^{b} f_{n}(x) d x \rightarrow \int_{a}^{b} f(x) d x$.

The integral of continuous functions defined in this way has the same properties as that for piecewise linear functions stated in the Proposition above.

Definition 19.5. A function $f:[a, b] \rightarrow \mathbb{R}$ is a step function if there is a partition P such that f is constant on each open interval $\left(x_{i-1}, x_{i}\right)$.

One can use the geometric formula for the integral of a step function (sum of areas of rectangles) as a starting point, and then extend that by uniform convergence. This yields a notion of integral which covers all continuous functions as well as some others (but still not as much as the Riemann integral).

MIT OpenCourseWare
http://ocw.mit.edu

18.100C Real Analysis

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

