18.100C Lecture 16 Summary

Pointwise convergence. Examples. Uniform convergence.

Theorem 16.1 (Cauchy convergence criterion). A sequence of functions $f_n : X \to \mathbb{R}$ is uniformly convergent if and only if the following holds. For every $\epsilon > 0$ there is an N such that if $m, n \ge N$ then $|f_n(x) - f_m(x)| < \epsilon$ for all x.

Uniform convergence of series of functions.

Corollary 16.2. (Weierstrass criterion) Let $\sum_{n=0}^{\infty} f_n$ be a series of functions. Suppose that there are constants M_n such that $|f_n(x)| \leq M_n$ for all n, x, and such that $\sum_{n=0}^{\infty} M_n$ converges. Then $\sum_{n=0}^{\infty} f_n$ converges uniformly.

Corollary 16.3. Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with radius of convergence $\rho > 0$. Then that series converges uniformly on any interval [-r, r] with $r < \rho$.

Theorem 16.4. If (f_n) are continuous functions converging uniformly towards f, then f is again continuous.

Corollary 16.5. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ be a power series with radius of convergence $\rho > 0$. Then f is continuous on $(-\rho, \rho)$.

18.100C Real Analysis Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.