18.100C Lecture 13 Summary

Example 13.1. The map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=x y$, is continuous.
Example 13.2. The map $\exp : \mathbb{R} \rightarrow \mathbb{R}$ is continuous (the same holds for \exp of a complex number, hence also for \cos and \sin).

Theorem 13.3. (Intermediate Value Theorem) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous map, such that $f(a) \leq 0, f(b) \geq 0$. Then there is some x such that $f(x)=0$.

Corollary 13.4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous map. Then its image is a closed interval $[c, d]$.

Corollary 13.5. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous map which is strictly increasing ($x<y$ implies $f(x)<f(y)$). Then f is one-to-one onto a closed interval $[c, d]$. Moreover, the inverse map $f^{-1}:[c, d] \rightarrow[a, b]$ is continuous.

Example 13.6. The map exp, from the real numbers to the positive real numbers, is strictly increasing and onto. We call its inverse the natural logarithm $\log :(0, \infty) \rightarrow \mathbb{R}$. This automatically satisfies $\log (a b)=\log (a)+\log (b)$, and is continuous.

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces, and $f: X \rightarrow Y$ a map.
Definition 13.7. f is uniformly continuous if: for any $\epsilon>0$ there is a $\delta>0$ such that if $d_{X}(x, y)<\delta$, then $d_{Y}(f(x), f(y))<\epsilon$.

Every absolutely continuous map is continuous.
Theorem 13.8. If X is compact, every continuous map $f: X \rightarrow Y$ is uniformly continuous.

MIT OpenCourseWare
http://ocw.mit.edu

18.100C Real Analysis

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

