18.100C Lecture 12 Summary

Let (X, d_X) and (Y, d_Y) be metric spaces, and $f: X \to Y$ a map.

Definition 12.1. f is continuous (everywhere) if: whenever (x_n) is a sequence in X converging to some point $p \in X$, then $(f(x_n))$ converges to f(p) in Y.

Definition 12.2. f is continuous (everywhere) if: for any open subset $V \subset Y$, the preimage $f^{-1}(V) = \{x \in X : f(x) \in V\}$ is an open subset of X.

Definition 12.3. f is continuous (everywhere) if: for all $p \in X$ and all $\epsilon > 0$, there is a $\delta > 0$ such that if $d_X(x, p) < \delta$ then $d_Y(f(x), f(p)) < \epsilon$.

The "such that..." part can be reformulated as follows: " $f(B_{\delta}(x)) \subset B_{\epsilon}(f(x))$ ". Or as follows: " $B_{\delta}(x) \subset f^{-1}(B_{\epsilon}(f(x)))$ ".

Definition 12.4. f is continuous (everywhere) if: for any closed subset $W \subset Y$, the preimage $f^{-1}(W)$ is a closed subset of X.

Theorem 12.5. The four definitions above are equivalent.

Theorem 12.6. If $f : X \to Y$ and $g : Y \to Z$ are continuous, then the composition $g \circ f : X \to Z$ is continuous.

Corollary 12.7. If $f, g: X \to \mathbb{R}$ (with the usual metric on the real numbers) are continuous, then f(x) + g(x) and f(x)g(x) are continuous.

Corollary 12.8. If $f : X \to \mathbb{R}$ is continuous and everywhere nonzero, then 1/f is continuous.

Theorem 12.9. If $f : X \to Y$ is continuous and $K \subset X$ is compact, then $f(K) \subset Y$ is compact.

Corollary 12.10. If X is a compact metric space and $f : X \to \mathbb{R}$ a continuous function, then f is bounded and has a minimum and maximum.

Corollary 12.11. Let X be a compact metric space, and $f : X \to Y$ a map which is continuous, one-to-one, and onto. Then the inverse map $f^{-1}: Y \to X$ (defined by $f(x) = y \Leftrightarrow x = f^{-1}(y)$) is again continuous.

We return to basic definitions. Let $f: X \to Y$ be a map between metric spaces. Fix a point $p \in X$.

Definition 12.12. f is continuous at p if: whenever (x_n) is a sequence in X converging to (our particular point) p, then $(f(x_n))$ converges to f(p).

Definition 12.13. f is continuous at p if: for all $\epsilon > 0$, there is a $\delta > 0$ such that if $d_X(x,p) < \delta$ then $d_Y(f(x), f(p)) < \epsilon$.

Theorem 12.14. The two definitions above are equivalent.

Definition 12.15. Let X, Y be metric spaces, $f : X \to Y$ a map, and $p \in X$ a point. We write

$$\lim_{x \to p} f(x) = q \in Y$$

if the following holds: for all $\epsilon > 0$, there is a $\delta > 0$ such that if $x \neq p$ and $d_X(x,p) < \delta$, then $d_Y(f(x), f(p)) < \epsilon$.

The advantage of this is that it makes sense even if f is defined only on $X \setminus \{p\}$.

Lemma 12.16. If $f : X \to Y$ satisfies $\lim_{x\to p} f(x) = f(p)$, then it is continuous at p (the converse also holds).

MIT OpenCourseWare http://ocw.mit.edu

18.100C Real Analysis Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.