18.100C Lecture 10 Summary

Theorem 10.1 (Euler). The series $\sum_{p} \frac{1}{p}$, where p ranges over all prime numbers, is divergent.

Absolute convergence of series (of real or complex numbers).

Theorem 10.2. Absolute convergence implies convergence.

Theorem 10.3. Suppose that $\sum_i a_i$ is absolutely convergent, with value *s*. Then, for every $\epsilon > 0$ there is an *N* such that the following holds. For every finite subset $I \subset \mathbb{N}$ such that $\{1, \ldots, N\} \subset I$, we have

$$\Big|\sum_{i\in I}a_i-s\Big|<\epsilon.$$

Corollary 10.4. If $\sum_i a_i$ is absolutely convergent, and $\sum_i a_{\sigma(i)}$ is a reordering (which means that $\sigma : \mathbb{N} \to \mathbb{N}$ is one-to-one and onto), then $\sum_i a_{\sigma(i)}$ is again absolutely convergent, and has the same value.

This allows us to define absolute convergence for series $\sum_{i \in I} a_i$, where I is any countable set.

Theorem 10.5 (Product theorem for series). Given series $\sum_{i=0}^{\infty} a_i$ and $\sum_{j=0}^{\infty} b_j$, define their product $\sum_{k=0}^{\infty} c_k$ by setting $c_k = \sum_{i=0}^{k} a_i b_{k-i}$. Suppose that $\sum_j a_i$ is absolutely convergent, and $\sum_j b_j$ convergent. Then $\sum_k c_j$ is again convergent, and

$$\left(\sum_{i} a_{i}\right) \cdot \left(\sum_{j} b_{j}\right) = \sum_{k} c_{k}.$$

Root criterion for absolute convergence.

MIT OpenCourseWare http://ocw.mit.edu

18.100C Real Analysis Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.