Problem Set 9

1. Recall that $\mathcal{C}^{1}([a, b])$ is defined as the space of functions $f:[a, b] \rightarrow \mathbb{R}$ which are everywhere differentiable and whose derivative f^{\prime} is a bounded function. One equips this space with the metric

$$
d(f, g)=\sup \{|f(x)-g(x)|\}+\sup \left\{\left|f^{\prime}(x)-g^{\prime}(x)\right|\right\} .
$$

Prove that this turns it into a complete metric space. Please write up your proof carefully in LaTeX. (3 points)
2 . Let $\left(f_{n}\right)$ be a sequence of functions $[a, b] \rightarrow \mathbb{R}$. Suppose that each f_{n} is a step function, and that they uniformly converge to a function f. Show that for each p, the one-sided limits

$$
\lim _{x \rightarrow p-} f(x), \quad \lim _{x \rightarrow p+} f(x)
$$

exist (one-sided limits are defined in the book on page 94, where they are called $f(p-)$ and $f(p+)$; you may use either notation). (5 points)
3. Let $f:[-1,1] \rightarrow \mathbb{R}$ be a continuous function which is odd, $f(x)=$ $-f(-x)$. Show that then, there is a sequence of polynomials which are odd and which uniformly converge to f. (4 points)

Total: $3+5+4=12$ points.

MIT OpenCourseWare
http://ocw.mit.edu

18.100C Real Analysis

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

