Problem Set 8

1. Let $\left(f_{n}\right)$ and $\left(g_{n}\right)$ be two sequences of functions $[a, b] \rightarrow \mathbb{R}$, each of which converges uniformly,

$$
\lim _{n} f_{n}=f, \quad \lim _{n} g_{n}=g
$$

Suppose that f and g are bounded. Show that then, $\left(f_{n} g_{n}\right)$ also converges uniformly to $f g$. Please write your solution to this problem out clearly in LaTeX (3 points).
2. We consider continuous functions $f:[0,1] \rightarrow \mathbb{R}$ such that $f(0)=0$ and $f(1)=1$. Given such a function f, define another function \hat{f} by

$$
\hat{f}(x)= \begin{cases}\frac{1}{4} f(2 x) & x<1 / 2 \\ \frac{3}{4} f(2 x-1)+\frac{1}{4} & x \geq 1 / 2\end{cases}
$$

Prove that \hat{f} belongs to the same class of functions. Next, prove that $d(\hat{f}, \hat{g}) \leq \frac{3}{4} d(f, g)$, where $d(f, g)=\max \{\|f(x)-g(x)\|: 0 \leq x \leq 1\}$. Then, prove that there is exactly one continuous function f in our class such that $\hat{f}=f$. (It's fun to try to graph it.) (5 points)
3. Let $\left(f_{n}\right)$ be a sequence of functions $[a, b] \rightarrow \mathbb{R}$ such that: (i) $f_{n}(x) \leq 0$ if n is even, $f_{n}(x) \geq 0$ if n is odd; (ii) $\left|f_{n}(x)\right| \geq\left|f_{n+1}(x)\right|$ for all x; (iii) f_{n} converges to 0 uniformly. Prove that then,

$$
\sum_{n} f_{n}
$$

is uniformly convergent. (5 points)
Total: $3+5+5=13$ points.

MIT OpenCourseWare
http://ocw.mit.edu

18.100C Real Analysis

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

