Problem Set 8

1. Let (f_n) and (g_n) be two sequences of functions $[a, b] \to \mathbb{R}$, each of which converges uniformly,

$$\lim_{n} f_n = f, \quad \lim_{n} g_n = g.$$

Suppose that f and g are bounded. Show that then, (f_ng_n) also converges uniformly to fg. Please write your solution to this problem out clearly in LaTeX (3 points).

2. We consider continuous functions $f : [0,1] \to \mathbb{R}$ such that f(0) = 0 and f(1) = 1. Given such a function f, define another function \hat{f} by

$$\hat{f}(x) = \begin{cases} \frac{1}{4}f(2x) & x < 1/2, \\ \frac{3}{4}f(2x-1) + \frac{1}{4} & x \ge 1/2. \end{cases}$$

Prove that \hat{f} belongs to the same class of functions. Next, prove that $d(\hat{f}, \hat{g}) \leq \frac{3}{4}d(f, g)$, where $d(f, g) = \max\{\|f(x) - g(x)\| : 0 \leq x \leq 1\}$. Then, prove that there is exactly one continuous function f in our class such that $\hat{f} = f$. (It's fun to try to graph it.) (5 points)

3. Let (f_n) be a sequence of functions $[a, b] \to \mathbb{R}$ such that: (i) $f_n(x) \leq 0$ if n is even, $f_n(x) \geq 0$ if n is odd; (ii) $|f_n(x)| \geq |f_{n+1}(x)|$ for all x; (iii) f_n converges to 0 uniformly. Prove that then,

$$\sum_{n} f_{n}$$

is uniformly convergent. (5 points)

Total: 3+5+5 = 13 points.

MIT OpenCourseWare http://ocw.mit.edu

18.100C Real Analysis Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.