Problem Set 10

1. Let $K:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be a continuous function. Show that if $f:[0,1] \rightarrow \mathbb{R}$ is Riemann-integrable, the function

$$
g(x)=\int_{0}^{1} K(x, y) f(y) d y
$$

makes sense and is in fact continuous. (Hint: you may find the compactness of $[0,1] \times[0,1]$ useful; and also the Riemann-integrability of $|f|$.)(5 points)
2. Prove that if $f, g:[a, b] \rightarrow \mathbb{R}$ are Riemann-Stieltjes integrable (for some $\alpha)$, then so is the function $\max (f, g)$. The solution for this problem should be written up carefully in LaTeX. (3 points)
3. (i) Prove that if $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function and not everywhere zero, then $\int_{a}^{b} f(x)^{2} d x>0$.
(ii) Using that, prove that if $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function and $\int_{a}^{b} x^{n} f(x) d x=0$ for all $n \geq 0$, then f is everywhere zero. (5 points)

Total: $5+3+5=13$ points.

MIT OpenCourseWare
http://ocw.mit.edu

18.100C Real Analysis

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

