Problem Set 9 Solutions, 18.100C, Fall 2012

November 30, 2012

1

Write $\mathcal{B}^{1}:=\mathcal{B}^{1}([a, b]), d(f, g)=\sup _{x \in[a, b]}|f(x)-g(x)|$ the uniform metric on real bounded functions, and $d^{1}(f, g)=d(f, g)+d\left(f^{\prime}, g^{\prime}\right)$ the given metric on \mathcal{B}^{1}. Note that if $f, g \in \mathcal{B}^{1}$, then $f, f^{\prime}, g, g^{\prime}$ are all bounded, and $d(f, g) \leq d^{1}(f, g)$ and $d\left(f^{\prime}, g^{\prime}\right) \leq d^{1}(f, g)$.

Now, let $\left(f_{i}\right)$ be a Cauchy sequence in \mathcal{B}^{1}. Then I claim that $\left(f_{i}^{\prime}\right)$ is Cauchy sequence with respect to d, the uniform metric. Indeed, for any $\epsilon>0$ pick N sufficiently large that $n, m>N \Longrightarrow d^{1}\left(f_{n}, f_{m}\right)<\epsilon$. But then $d\left(f_{n}^{\prime}, f_{m}^{\prime}\right) \leq d^{1}\left(f_{n}, f_{m}\right)<\epsilon$, so $\left(f_{i}^{\prime}\right)$ is Cauchy.

Thus by Rudin Theorem 7.8, $\left(f_{i}^{\prime}\right)$ is uniformally convergent. By a similar argument, $\left(f_{i}\right)$ is also uniformally convergent, and in particular the sequence $\left(f_{i}\left(x_{0}\right)\right)$ converges for any $x_{0} \in[a, b]$. Thus by Rudin Theorem 7.17, there exists a differentiable function $f:[a, b] \rightarrow \mathbb{R}$ such that $f_{i} \rightarrow f$ uniformally and $f_{i}^{\prime} \rightarrow f^{\prime}$ uniformally.

I claim that $f \in \mathcal{B}^{1}$. To prove this, we need to show that f^{\prime} is bounded. Pick N sufficiently large that $d\left(f_{N}^{\prime}, f^{\prime}\right)<1$. Since f_{N}^{\prime} is bounded, there exists $M>0$ such that $\left|f_{N}^{\prime}(x)\right|<M$ for all $x \in[a, b]$. But then

$$
\left|f^{\prime}(x)\right| \leq\left|f^{\prime}(x)-f_{n}^{\prime}(x)\right|+\left|f_{N}^{\prime}(x)\right|<1+M
$$

So f^{\prime} is bounded and $f \in \mathcal{B}^{1}$
Finally, we need to show that $f_{i} \rightarrow f$ in \mathcal{B}^{1}. Let $\epsilon>0$. Pick N sufficiently large that $n>N$ implies $d\left(f_{n}, f\right)<\epsilon / 2$ and $d\left(f_{n}^{\prime}, f^{\prime}\right)<\epsilon$, which we
can do by uniform convergence. Then $d^{1}\left(f_{n}, f\right)=d\left(f_{n}, f\right)+d\left(f_{n}^{\prime}, f^{\prime}\right)<\epsilon$, so $f_{n} \rightarrow f$ in \mathcal{B}^{1}.

2

We will prove the following more general lemma, which will imply the result
Lemma: Suppose $\left(f_{n}\right)$ is a sequence of functions from $[a, b] \rightarrow \mathbb{R}$, and $f_{n} \rightarrow f$ uniformally. Suppose furthermore that for every $p \in(a, b]$ the left limit $f_{n}(p-)$ exists for all n. Then the left limit $f(-p)$ exists for all $p \in(a, b]$.

A similar result holds for right limits $f(p+)$ for $p \in[a, b)$ with the same proof (after the obvious changes are made).

Before we prove the Lemma, let us show how it implies our result. Let $f:[a, b] \rightarrow \mathbb{R}$ be a step function, and $p \in[a, b]$. If p is not one of the finitely many "step" points of f, then f is continuous at p, and so clearly the left and right limits $f(p-)$ and $f(p+)$ exist (and are in fact equal). If p happens to be one of the step points of f, there is some small $\epsilon>0$ and $c, d \in \mathbb{R}$ such that for $x \in(p-\epsilon, p), f(x)=c$, while for $x \in(p, p+\epsilon), f(x)=d$. But then $f(p-)=c$ and $f(p+)=d$, so the left and right limits both exist.

Hence if $\left(f_{n}\right)$ is a uniformally convergent sequence of step functions, and $p \in[a, b]$ the limits $f_{n}(p-)$ and $f_{n}(p+)$ exist, hence by the lemma so do the limits $f(p-)$ and $f(p+)$.

Proof of Lemma: This argument is almost word for word the same as the proof of Rudin Theorem 7.11. Let $p \in(a, b]$, and set $A_{n}=f_{n}(p-)$. We first want to show that $\left(A_{n}\right)$ is Cauchy. Let $\epsilon>0$. Since $\left(f_{n}\right)$ is uniformally convergent it is Cauchy, we there exists $N \in \mathbb{N}$ such that for $n, m>N$ and $x \in[a, b]$ we have

$$
\left|f_{n}(x)-f_{m}(x)\right| \leq \epsilon
$$

Then letting $x \rightarrow p-$ (i.e. x approaches p from below) we have

$$
\left|A_{n}-A_{m}\right| \leq \epsilon
$$

Thus $\left(A_{n}\right)$ is Cauchy, and hence converges to some number A

We need to show that $A=f(p-)$, and in particular that $f(p-)$ exists. Again let $\epsilon>0$. For any $x \in[a, b]$ and $n \in \mathbb{N}$ we have

$$
|f(x)-A| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-A_{n}\right|+\left|A_{n}-A\right|
$$

Since $f_{n} \rightarrow f$ uniformally and $A_{n} \rightarrow A$, we can pick n sufficiently large that for all $x \in[a, b]$

$$
\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{3}
$$

and

$$
\left|A-A_{n}\right|<\frac{\epsilon}{3}
$$

Since $f_{n}(p-)=A_{n}$, there exists $\delta>0$ such that for $x \in(p-\delta, p)$,

$$
\left|f_{n}(x)-A_{n}\right|<\frac{\epsilon}{3}
$$

. Putting these inequalties together, we see that for $x \in(p-\delta, p)$ we have

$$
|f(x)-A| \leq \epsilon
$$

Which implies $A=f(p-)$.

3

Let $p(x)=\sum_{k=1}^{n} a_{k} x^{k}$ be any polynomial. Then if $q(x)=(p(x)-p(-x)) / 2=$ $\sum_{k=1}^{n} b_{k} x^{k}$, we have that $b_{k}=a_{k}$ if k is odd, and $b_{k}=0$ if k is even. In particular, $q(x)$ is an odd polynomial.

Now let $f:[-1,1] \rightarrow \mathbb{R}$ be any continuous function, not necessarily odd. By the Weierstrass theorem there exists a sequence of polynomials $p_{n}(x)$ with $p_{n}(x) \rightarrow f(x)$ uniformally on $[-1,1]$.

If $f, g:[-1,1] \rightarrow \mathbb{R}$ are any two bounded functions, we obviously have $\sup _{x \in[-1,1]}|f(x)-g(x)|=\sup _{x \in[-1,1]}|f(-x)-g(-x)|$. In particular, $p_{n}(-x) \rightarrow$ $f(-x)$ uniformally. Hence if we define $q_{n}(x)=\left(p_{n}(x)-p_{n}(-x)\right) / 2$, then $\left(q_{n}\right)$ is a sequence of odd polynomials, and $q_{n}(x) \rightarrow(f(x)-f(-x)) / 2$ uniformally.

However, if f is odd, then $(f(x)-f(-x)) / 2=(f(x)+f(x)) / 2=f(x)$, so $q_{n} \rightarrow f$ uniformally.

MIT OpenCourseWare
http://ocw.mit.edu

18.100C Real Analysis

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

