Problem Set 8 Solutions, 18.100C, Fall 2012

November 14, 2012

For bounded functions $f, g:[a, b] \rightarrow \mathbb{R}$, we use the notation $\|f\|=$ $\sup \{\mid f(x) \| x \in[a, b]\}$ and $d(f, g)=\|f-g\|$.

1

We have $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ uniformally. We wish to show that $f_{b} g_{n} \rightarrow f g$ uniformally as well. Let $\epsilon>0 . f$ and g are bounded by assumption, so pick $K \in \mathbb{R}$ with $\|f\|,\|g\|<K$. We may assume $K>\epsilon$. Pick a $\delta>0$ with $\delta<\epsilon /(3 K)$, and pick $N \in \mathbb{N}$ sufficiently large that for $n>N$, $\left\|f-f_{n}\right\|,\left\|g-g_{n}\right\|<\delta$, which is possible by Rudin 7.9. Note that for any such $n>N$, we have by Rudin 7.14

$$
\left\|f_{n}\right\| \leq\left\|f_{n}-f\right\|+\|f\|<\delta+K<2 K
$$

And similarly $\left\|g_{n}\right\|<2 K$. Let $x \in[a, b]$. We then have, for $n>N$,

$$
\begin{gathered}
\left|f(x) g(x)-f_{n}(x) g_{n}(x)\right|=\mid\left(f(x) g(x)-f(x) g_{n}(x)\right)+\left(f(x) g_{n}(x)-f_{n}(x) g_{n}(x) \mid\right. \\
<\left|f(x)\left(g(x)-g_{n}(x)\right)\right|+\left|g_{n}(x)\left(f(x)-f_{n}(x)\right)\right| \\
=|f(x)| \cdot\left|g(x)-g_{n}(x)\right|+\left|g_{n}(x)\right| \cdot\left|f(x)-f_{n}(x)\right| \\
<K \delta+2 K \delta<\epsilon
\end{gathered}
$$

Since this was true for any $x \in[a, b]$, we must have $\left\|f g-f_{n} g_{n}\right\|<\epsilon$ for any $n>N$, which proves the result.

Let \mathcal{F} be the set of all continuous functions $f:[0,1] \rightarrow \mathbb{R}$ with $f(0)=0$ and $f(1)=1$. We have to show that if $f \in \mathcal{F}$, then $\hat{f} \in \mathcal{F}$. We have

$$
\hat{f}(0)=\frac{1}{4} f(2 \cdot 0)=\frac{1}{4} f(0)=0
$$

and

$$
\hat{f}(1)=\frac{3}{4} f(2-1)+\frac{1}{4}=\frac{3}{4}+\frac{1}{4}=1
$$

We also need to show that \hat{f} is continuous. At points $x \neq 1 / 2 \tilde{f}$ is continuous by Rudin 4.7, we just need to show that it is continuous at $1 / 2$. Note that $\tilde{f}(1 / 2)=3 / 4(f(0))+1 / 4=1 / 4$

Let $\epsilon>0$. Pick $\delta>0$ such that

$$
|x-0|<2 \delta \Longrightarrow|f(x)-f(0)|=|f(x)|<\epsilon
$$

and

$$
|x-1|<2 \delta \Longrightarrow|f(x)-f(1)|=|f(x)-1|<\epsilon
$$

Now suppose $|x-1 / 2|<\delta$. We wish to show that $|\tilde{f}(x)-\tilde{f}(1 / 2)|=$ $|\tilde{f}(x)-1 / 4|<\epsilon$. There are two possibilies.

If $x<1 / 2$, then $|1-2 x|<2 \delta$, and so $|f(2 x)-1|<\epsilon$. But then

$$
|\tilde{f}(x)-\tilde{f}(1 / 2)|=\left|\frac{1}{4} f(2 x)-\frac{1}{4}\right|=\frac{1}{4}|f(2 x)-1|<\frac{\epsilon}{4}
$$

Similarly, if $x>1 / 2$, then again $|2 x-1|<2 \delta$, and so $|f(2 x-1)|<\epsilon$. Then

$$
|\tilde{f}(x)-\tilde{f}(1 / 2)|=\left|\frac{3}{4} f(2 x-1)+\frac{1}{4}-\frac{1}{4}\right|=\frac{3}{4}|f(2 x-1)|<\frac{3 \epsilon}{4}
$$

In either case $|\tilde{f}(x)-\tilde{f}(1 / 2)|<\epsilon$, so \tilde{f} is continuous at $1 / 2$.
Suppose $f, g \in \mathcal{F}$, and let $x \in[0,1]$. If $x<1 / 2$, we have

$$
|\tilde{f}(x)-\tilde{g}(x)|=\left|\frac{1}{4} f(2 x)-\frac{1}{4} g(2 x)\right|=\frac{1}{4}|f(2 x)-g(2 x)| \leq \frac{1}{4}| | f-g| |=\frac{1}{4} d(f, g)
$$

Similarly, if $x \geq 1 / 2$, we have

$$
\begin{aligned}
& |\tilde{f}(x)-\tilde{g}(x)|=\left|\left(\frac{3}{4} f(2 x-1)-\frac{1}{4}\right)-\left(\frac{3}{4} g(2 x-1)-\frac{1}{4}\right)\right| \\
& \quad=\frac{3}{4}|f(2 x-1)-g(2 x-1)| \leq \frac{3}{4}| | f-g \|=\frac{3}{4} d(f, g)
\end{aligned}
$$

In either case $|\tilde{f}(x)-\tilde{g}(x)| \leq 3 / 4 d(f, g)$, and so

$$
d(\tilde{f}, \tilde{g})=\|\tilde{f}-\tilde{g}\| \leq \frac{3}{4} d(f, g)
$$

Now, \mathcal{F} is a metric space with metric $d(\cdot, \cdot)$, and by what we have shown we can think of ${ }^{\wedge}: \mathcal{F} \rightarrow \mathcal{F}$ as a function which contracts distances by at least $3 / 4$.

Now suppose that \mathcal{F} is actually a complete metric space. Then by the Contraction Mapping Theorem, Rudin 9.23 (which we have proved on a previous homework), there would have to be a unique element $f \in \mathcal{F}$ with $\hat{f}=f$. So we just have to prove that \mathcal{F} is complete.

Note that $\mathcal{F} \subset \mathcal{C}=\mathcal{C}([0,1], \mathbb{R})$, the set of all continuous functions $[0,1] \rightarrow \mathbb{R}$, and in fact the metric on \mathcal{F} is the restriction of the metric on \mathcal{C} By Rudin Theorem $7.15, \mathcal{C}$ is a complete metric space. But closed subsets of complete metric spaces are themselves complete (you should check this if it isn't obvious to you), so if we can show that $\mathcal{F} \subset \mathcal{C}$ is closed then we are done.

We will show that $\mathcal{F} \subset \mathcal{C}$ is closed by showing that its complement is open. So let $f \in \mathcal{C} \backslash \mathcal{F}$. Then either $f(0) \neq 0$ or $f(1) \neq 1$. Without loss of generality suppose $f(0) \neq 0$. Let $\epsilon>0$ such that $|f(0)|>2 \epsilon$. Then if $d(f, g)<\epsilon$, in particular $|f(0)-g(0)|<\epsilon$, and so $|g(0)|>\epsilon$, and $g \in \mathcal{F}^{c}$. In other words, $B_{\epsilon}(f) \subset \mathcal{F}^{c}$, and so \mathcal{F}^{c} is open.

Another, more conceptual way to prove that \mathcal{F} is closed is to show that for any $a \in[0,1]$, the $\operatorname{map} e v_{a}: \mathcal{C} \rightarrow \mathbb{R}$ given by $e v_{a}(f)=f(a)$ is continuous. But the inverse image of a closed set under a continuous map is closed, and so $\mathcal{F}=e v_{0}^{-1}(0) \cap e v_{1}^{-1}(1)$ is also closed. Details are left to the interested reader.

3

For any $x \in[a, b]$, the sequence $f_{1}(x), f_{2}(x), \ldots$ is an alternating sequence of real numbers of decreasing norm, with the norm converging to 0 . Hence by Rudin 3.43 , or by a previous homework problem, the series $\sum_{n} f_{n}$ converges. Define a function (not necessarily continuous) $f:[a, b] \rightarrow \mathbb{R}$ by $f(x):=\sum_{n} f_{n}(x)$. Then the sequence of partial sums $s_{n}=\sum_{k=1}^{n} f_{k}$ converges pointwise to f. We wish to show that the convergence is uniform.

Let $\epsilon>0$. We need to find an $N \in \mathbb{N}$ such for $n>N$ and any $x \in[a, b]$, $\left|f(x)-s_{n}(x)\right|<\epsilon$. We know that $f_{k} \rightarrow 0$ uniformally. So let $N \in \mathbb{N}$ be sufficiently large that $\left|f_{k}(x)\right|<\epsilon$ for all $k>N, x \in[a, b]$.

We now need the following
Lemma: Suppose $\left(a_{n}\right)$ is an alternating sequence as in Rudin 3.43, and $a=\sum_{n} a_{n}$. Then $|a|<\left|a_{1}\right|$.

Assume the Lemma for the moment. For any $n>N$, indeed any n, we have

$$
f(x)-s_{n}(x)=\sum_{k=n+1}^{\infty} f_{k}(x)
$$

But $\sum_{k=n+1}^{\infty} f_{k}(x)$ is itself an alternating series. By the Lemma, we then have

$$
\left|f(x)-s_{n}(x)\right|=\left|\sum_{k=n+1}^{\infty} f_{k}(x)\right|<\left|f_{n+1}(x)\right|<\epsilon
$$

Since the choice of N did not depend on the point x, we have $s_{n} \rightarrow f$ uniformally.

Proof of Lemma: We first show that a_{1} and a have the same sign. We have

$$
a=\sum_{n=1}^{\infty} a_{n}=\left(a_{1}+a_{2}\right)+\left(a_{3}+a_{4}\right)+\cdots=\sum_{n=1}^{\infty}\left(a_{2 n-1}+a_{2 n}\right)
$$

All terms $a_{2 n-1}-a_{2 n}$ in the sum on the right have the same sign as a_{1}, and so a must also have the same sign as a_{1}.

Now assume $a_{1}>0$. Then $a>0$ as well, and $a-a_{1}=\sum_{n=2}^{\infty} a_{n}$. But by the previous paragraph, the latter sum has the same sign as a_{2}, which is negative. Hence $a-a_{1}<0$, and $0<a<a_{1}$, so $|a|<\left|a_{1}\right|$. The result follows for $a_{1}<0$ by replacing a_{n} with $-a_{n}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.100C Real Analysis

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

