Problem Set 7 Solutions, 18.100C, Fall 2012

October 31, 2012

1

We wish to define $\bar{\omega} / 2$ as the smallest zero of $\cos (x)$, i.e. as the positive real number such that $\cos (\bar{\omega} / 2)=0$ and for $0<x<\bar{\omega} / 2, \cos (x) \neq 0$. Clearly such a number, if it exists, is unique; if b and b^{\prime} both satisfy the condition, then $b \leq b^{\prime}$ and $b^{\prime} \leq b$, so $b=b^{\prime}$. So we just have to prove existence.

Assume first that there exists some $a>0$ such that $\cos (a)=0$. Consider the set $E=\cos ^{-1}(0) \cap[0, a]$. Since cos is continuous E is a closed subset of the compact set $[0, a]$. E is also non-empty, since $a \in E$. Let $b=\inf E$; since E is closed $b \in E$, i.e. $\cos (b)=0$. If $\cos (x)=0$, then either $x>a>b$, or $x \leq a$ and $x \in E$, so $x \geq b$. So we have $\bar{\omega} / 2=b$. Note that the only fact about cos that we used is that it is continuous; indeed, every continuous function on $[0, \infty)$ with at least one zero has a smallest zero, although unlike the case of cos that zero will not always be isolated.

It remains to show that cos has some positive zero. Note that $\cos (0)=1$. We will show in the next paragraph that $\cos (2)<0$. Since cos is continuous, we can apply the Intermediate Value Theorem to the interval $[0,2]$ to conclude that there exists $a \in(0,2)$ with $\cos (a)=0$.

Let $a_{k}=(-1)^{k} 2^{2 k} /(2 k)!$. Then $\cos (2)=\sum_{k=0}^{\infty} a_{k}$. Note that

$$
\left|a_{k+1}\right|=\frac{4}{(2 k+1)(2 k+2)}\left|a_{k}\right|
$$

So as long as $k>0,\left|a_{k}\right|>\left|a_{k+1}\right|$. Hence, after the first two terms, $\left|a_{k}\right|$ is an alternating sequence of stricly decreasing abosulte value, with the absolute value converging to zero. However, as we showed on a previous homework,
all the odd partial sums of such a series are bigger than the sum of the whole series. In particular, we have

$$
\cos (2)=\sum_{k=0}^{\infty} a_{k}<\sum_{k=0}^{2} a_{k}=1-\frac{2^{2}}{2}+\frac{2^{4}}{4!}=-\frac{1}{3}<0
$$

2

Let $f: I \rightarrow I$ be a continuous function. Define $g: I \rightarrow \mathbb{R}$ by $g(x)=x-f(x)$. Then

$$
g(0)=0-f(0) \leq 0 \quad \text { and } \quad 0 \leq 1-f(1)=g(1)
$$

If equality holds in either case then we are done. Otherwise $g(0)<0<g(1)$. One can check that g is continuous (use Theorem 4.6 and $4.4 a$)) and so we can apply Theorem 4.23 to find a point $x \in(0,1)$ such that $g(x)=0$, i.e. $f(x)=x$.

3

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and suppose that

$$
|f(x)-f(y)| \leq(x-y)^{2} \quad \text { for all } x, y \in \mathbb{R}
$$

Fix $x \in \mathbb{R}$. Then for $y \neq x$,

$$
\left|\frac{f(x)-f(y)}{x-y}\right| \leq|x-y| \rightarrow 0 \quad \text { as } \quad y \rightarrow x
$$

Thus $f^{\prime}(x)=0$. By Theorem 5.11b), f is constant.

MIT OpenCourseWare
http://ocw.mit.edu

18.100C Real Analysis

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

