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Let s
 n

k = k=1 xk. Then we say that k
∞
=1 xk converges to s if the sequence 

sn converges to s as n → ∞. 

 
Now suppose

 ∞
k=1 xk = s converges to some s = 0. We wish to show 

that limk xk = 1. Let yk = xk − 1; then this is equivalent to limk yk = 0. 
Note that 

nn+1 nn  n  
sn+1 − sn = xk − xk = (xn+1 − 1) 

k=1 k=1 k

n
xk = yk+1sn 

=1 

Now pick E > 0; we will find N ∈ N such that n > N =⇒ |yn| < E, which 
will prove that limk yk = 0. Since limn sn = s and s = 0, there exists an 
M such that n > M =⇒ |s − sn| < |s|/2, which implies |sn| > |s|/2. Let 
δ > 0 be sufficiently small that E|s|/2 > δ. Since sn converges it is a Cauchy 
sequence, so there exists N > M such that for n,m > N , |sn − sm| < δ. In 
particular, for any n > N we have 

s
δ > |sn+1  sn  = yn+1sn  > yn+1  

| |− | | | | | ·
2 

So |yn+1| < 2δ/|s| < E. So N + 1 works for this E. 

As for
 ∞

k=1(1 + 1/k), we have 
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Since the partial sums
 n

k=1 1/k diverge to infinity, we must have limn sn = 
∞, and so this product does not converge. 
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Here we adapt Rudin’s proof of Theorem 3.27. Let a1 > a2 > a3 · · · > 0 be 
a decreasing sequence of positive  2um ers.  bn =

 n−1real n b  Let k=2n−1 ak. We 
then have 

n
1

>
k

k=1

∑

n∑
bn = ak

k=1 k=1

So
∑

k bk converges if and only if
∑

k ak does, and converges to the same
value. Since ak is decreasing, we have

2n−1 1

bn =
∑ 2

ak <
∑n−

a2n 1 = 2n−1a− 2n−1

k=2n−1 k=2n−1

Now specialize to the case a 2
k = 1/k . Then 2na n

2n = 2n−2n = 2− . Thus we
have the estimate

∑∞ 1
=

k2
k=1

∑∞ ∞

bk < 2
k=1

∑
2−k =

k=0

(Note the index shift), which is not quite as tight as we want. However, we
can use the same idea to get sharper estimates. Indeed, note that

∑∞
bk <

∑∞
2−k = 2−3

k=5 k=4

On the other hand, we can explicity compute

15
1

b1 + b2 + b3 + b4 =
∑

≈ 1.58 < 1.6
k2

k=1

Of course one should give the precise fractional value, rather the than ap-
proximate decimal one, but I don’t have Mathematica handy at the moment,
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2n−1∑



 

 

and this estimate is sufficient. 

Putting these two estimates together, we have 

For those who are curious, the actual value is π2/6, first calculated by Euler 
with an argument that is at the same time brilliant and sufficiently unrig
orous that you would probably receive no credit if you wrote it up for this 
course. 
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We have a continuous function f : X → Y , and E ⊂ X. We wish to show 
that f(E) ⊂ f(E) Let x ∈ E. Then f(x) ∈ f(E) if any only if, for every 
E > 0, NE(f(x)) ∩ f(E) = ∅. 

So let E > 0. Since f is continuous at x, there exists δ > 0 such that 
for all y ∈ X, d(x, y) < δ =⇒ d(f(x), f(y)) < E. But x ∈ E, so all neigh
bourhoods of X intersect E. In other words there exists y ∈ E such that 
d(x, y) < δ. Then d(f(x), f(y)) < E, so f(y) ∈ NE(f(x)) ∩ f(E) = ∅ and we 
are done. 

To show that the inclusion can be proper, let X = Q, Y = R, f : X → Y 
the inclusion ι : Q y = X Obviously every set is closed as a → R, and E = Q. 
subset of itself, so E = E. However, f(E) = Q ⊂ R is dense, and f(E) = R. 
Then f(E) \ f(E) = R \ Q, and hence the inclusion is certainly proper. 
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We have a continuous function f : X → R. Note that the one point set 
{0} ⊂ R; indeed, by Rudin Theorem 2.20 finite subsets of arbitrary metric 
spaces are closed. By Rudin Theorem 4.8 a function is continuous if and only 
if the inverse image of any closed set is closed. So Z(f) = f−1({0}) ⊂ X is 
closed. 

If you don’t believe that, we can provide essentially the same proof us
ing the previous problem. Let E = Z(f), and note that f(E) = {0}. Then 
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∞ 4
1

∞

= bk + bk < 1.6 + 2
k2

−3 = 1.725 < 1.75 = 7/4
k=1 k=1 k=5

∑ ∑ ∑

6

6



we have 
f(E) ⊂ f(E) = {0} = {0} 

Which is to say that E ⊂ f−1({0}) = E, i.e. E is closed. 
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