Problem Set 4 Solutions, 18.100C, Fall 2012

October 11, 2012

1

Let X be a complete metric space with metric d, and let $f: X \rightarrow X$ be a contraction, meaning that there exists $\lambda<1$ such that $d(f(x), f(y)) \leq \lambda d(x, y)$ for all $x, y \in X$. Then there is a unique point $x_{0} \in X$ such that $f\left(x_{0}\right)=x_{0}$.

Proof:

Existence: Let $x_{1} \in X$ be arbitary and inductively let $x_{n+1}=f\left(x_{n}\right)$ for $n \in \mathbb{N}$. We will prove that $\left(x_{n}\right)$ is a Cauchy sequence. Suppose inductively that

$$
d\left(x_{r+1}, x_{r}\right) \leq \lambda^{r-1} d\left(x_{2}, x_{1}\right) .
$$

Then

$$
d\left(x_{r+2}, x_{r+1}\right)=d\left(f\left(x_{r+1}\right), f\left(x_{r}\right)\right) \leq \lambda d\left(x_{r+1}, x_{r}\right) \leq \lambda^{r} d\left(x_{2}, x_{1}\right)
$$

so that the above equation holds for all $r \in \mathbb{N}$. For $m>n$, by repeated use of the triangle inequality

$$
d\left(x_{m}, x_{n}\right) \leq d\left(x_{m}, x_{m-1}\right)+d\left(x_{m-1}, x_{m-2}\right)+\ldots+d\left(x_{n+1}, x_{n}\right) .
$$

Hence,
$d\left(x_{m}, x_{n}\right) \leq\left(\lambda^{m-2}+\ldots \lambda^{n-1}\right) d\left(x_{2}, x_{1}\right)=\frac{\lambda^{n-1}\left(1-\lambda^{m-n}\right)}{1-\lambda} d\left(x_{2}, x_{1}\right) \leq \frac{\lambda^{n-1}}{1-\lambda} d\left(x_{2}, x_{1}\right)$.
Let $\epsilon>0$. By theorem $3.20(e)$ and $3.3(b)$, there exists an $N \in \mathbb{N}$ such that

$$
n \geq N \Longrightarrow \lambda^{n-1} d\left(x_{2}, x_{1}\right)<\epsilon(1-\lambda)
$$

and so

$$
m, n \geq N \Longrightarrow d\left(x_{m}, x_{n}\right)<\epsilon,
$$

which shows $\left(x_{n}\right)$ is Cauchy. Since X is complete $\left(x_{n}\right)$ converges to some $x_{0} \in X$. Given $\epsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
n \geq N \Longrightarrow d\left(x_{0}, x_{n}\right)<\frac{\epsilon}{2}
$$

and so
$d\left(x_{0}, f\left(x_{0}\right)\right) \leq d\left(x_{0}, x_{N+1}\right)+d\left(f\left(x_{N}\right), f\left(x_{0}\right)\right) \leq d\left(x_{0}, x_{N+1}\right)+\lambda d\left(x_{N}, x_{0}\right)<\epsilon$.
Since ϵ was arbitary, $d\left(x_{0}, f\left(x_{0}\right)\right)=0$ giving $x_{0}=f\left(x_{0}\right)$, as required.
Uniqueness: If $f\left(x_{0}\right)=x_{0}$ and $f\left(y_{0}\right)=y_{0}$ then

$$
\begin{gathered}
d\left(x_{0}, y_{0}\right)=d\left(f\left(x_{0}\right), f\left(y_{0}\right)\right) \leq \lambda d\left(x_{0}, y_{0}\right) \Longrightarrow(1-\lambda) d\left(x_{0}, y_{0}\right) \leq \\
0 \Longrightarrow d\left(x_{0}, y_{0}\right) \leq 0 .
\end{gathered}
$$

Thus $d\left(x_{0}, y_{0}\right)=0$ giving $x_{0}=y_{0}$.

2

We have a convergent sequence $x_{k} \rightarrow x$, and a bijective function $g: \mathbb{N} \rightarrow \mathbb{N}$, with an inverse function g^{-1}, and we wish to show that x_{k}^{\prime} also converges to x. Pick $\epsilon>0$; we will find N^{\prime} such that $k^{\prime}>N^{\prime} \Longrightarrow d\left(x, x_{k^{\prime}}\right)<\epsilon$

Since $x_{k} \rightarrow x$, there exists $N \in \mathbb{N}$ such that $k>N \Longrightarrow d\left(x, x_{k}\right)<\epsilon$. Now, pick an $N^{\prime} \in \mathbb{N}$ greater than $\max \left\{g^{-1}(1), g^{-1}(2) \ldots g^{-1}(N)\right\}$, which is always possible since this is a finite set. Let $k^{\prime}>N^{\prime}$, and consider $x_{k}^{\prime}=x_{g\left(k^{\prime}\right)}$. Let $k=g\left(k^{\prime}\right)$; then we must have $k>N$. If not, then $k \leq N$ and by the definition of N^{\prime} we have $k^{\prime}=g^{-1}(k)<N^{\prime}<k^{\prime}$, a contradiction. So we have $d\left(x, x_{k}^{\prime}\right)=d\left(x, x_{g(k)}\right)<\epsilon$. So this N^{\prime} works, and we are done.

This statement is no longer true if g is not one-to-one. As a counter-example, consider the sequence of real numbers $x_{k}=1 / k$, and the function $g: \mathbb{N} \rightarrow \mathbb{N}$ give by $g(n)=1$ if n is odd, $g(n)=2$ if n is even. Then $x_{k} \rightarrow 0$, but x_{k}^{\prime} simply alternates between 1 and $1 / 2$, and hence is not a Cauchy sequence and cannot converge.

3

To set notation, we use boldface for vectors in \mathbb{R}^{n}, i.e. $\mathbf{x} \in \mathbb{R}^{n}$, and superscripts with the same letter non-boldfaced for components of that vector, i.e. x^{j} is the j^{\prime} th component of $\mathbf{x}, 1 \leq j \leq n$. We use lower subscripts for sequences; $\left\{\mathbf{x}_{i}\right\}$ will be a sequence in \mathbb{R}^{n}, and x_{i}^{j} is the j^{\prime} th component of the i^{\prime} 'th vector in the sequence.

With that set, we can proceed with the problem. Suppose first that $\mathbf{x}_{i} \rightarrow \mathbf{x}$; we need to show that $x_{i}^{j} \rightarrow x^{j}$ as $i \rightarrow \infty$. Note first that, for any two vectors $\mathbf{y}, \mathbf{z} \in \mathbb{R}^{n}$, we have $\left(y^{j}-z^{j}\right)^{2} \leq \sum_{l=1}^{n}\left(y^{l}-z^{l}\right)^{2}$. Taking the positive square root of both sides, we see that $\left|y^{j}-z^{j}\right| \leq\|\mathbf{y}-\mathbf{z}\|$. Now, take any $\epsilon>0$, and N sufficiently large that for $k>N,\left\|\mathbf{x}-\mathbf{x}_{\mathbf{k}}\right\|<\epsilon$. Then by what we just showed $\left|x^{j}-x_{k}^{j}\right|<\epsilon$, so this N also works for ϵ and the sequence $\left\{x_{k}^{j}\right\}$, so we have $x_{k}^{j} \rightarrow x^{j}$ as desired.

For the other direction, suppose that x_{k}^{j} converges to some real number x^{j} for each $1 \leq j \leq n$. Then take the vector \mathbf{x} whose j^{\prime} 'th component is x^{j}. We will show that $\mathbf{x}_{k} \rightarrow \mathbf{x}$. Fix $\epsilon>0$. Since $x_{k}^{j} \rightarrow x^{j}$, we can choose for each j a natural number N^{j} such that for $k>N^{j},\left|x^{j}-x_{k}^{j}\right|<\epsilon / \sqrt{n}$; recall that n here is the dimension \mathbb{R}^{n}. Now take N bigger than any of the $N^{1}, N^{2}, \ldots N^{n}$; we claim that for $k>N,\left\|\mathbf{x}-\mathbf{x}_{k}\right\|<\epsilon$, so that this N works for this choice of ϵ, and we have shown that $\mathbf{x}_{k} \rightarrow \mathbf{x}$. We compute

$$
\begin{gathered}
\left\|\mathbf{x}-\mathbf{x}_{k}\right\|=\sqrt{\left(x^{1}-x_{k}^{1}\right)^{2}+\left(x^{2}-x_{k}^{2}\right)^{2}+\cdots+\left(x^{n}-x_{k}^{n}\right)^{2}}<\sqrt{(\epsilon / \sqrt{n})^{2}+\cdots+(\epsilon / \sqrt{n})^{2}} \\
=\sqrt{n \epsilon^{2} / n}=\epsilon
\end{gathered}
$$

Where we used the fact that the square root function is increasing in the second step. This completes the proof.

4

Recall that the p-adic metric is defined as follows: if $a, b \in \mathbb{Z}$, let n be the largest power of p that divides $a-b$, i.e. $p^{n} \mid(a-b)$, but $p^{n+1} \nmid(a-b)$. Then $d(a, b)=1 / p^{n}$.

Now we wish to show that the sequnce $x_{k}=\sum_{i=0}^{k-1} p^{i}$ is Cauchy. Note that p does not divide any x_{k}; indeed, $x_{k}-1$ is divisible by p, and no consequetive numbers are divisible by p. Consider any pair x_{n}, x_{m}, where without loss of generality $n>m$. Then

$$
x_{n}-x_{m}=\sum_{i=0}^{n-1} p^{i}-\left(\sum_{i=0}^{m-1} p^{i}\right)=\sum_{i=m}^{n-1} p^{i}=p^{m}\left(\sum_{i=0}^{n-m-1} p^{i}\right)=p^{m} x_{n-m}
$$

Since p does not divide x_{n-m}, this means that the largest power of p dividing $x_{n}-x_{m}$ is m. In other words, $d\left(x_{n}, x_{m}\right)=1 / p^{m}$. This formula shows that $\left\{x_{k}\right\}$ is Cauchy. Indeed, let $\epsilon>0$. By Rudin 3.20 (e), we can find $N \in \mathbb{N}$ sufficiently large that $1 / p^{N}<\epsilon$. Then if $n>m>N$, we have $d\left(x_{n}, x_{m}\right)=1 / p^{m}<1 / p^{N}<\epsilon$, and so the sequence is Cauchy.

Now consider the case $p=2$. By the formula for the sum of a geometric series we have

$$
x_{n}=\sum_{i=0}^{n-1} 2^{i}=\frac{2^{n}-1}{2-1}=2^{n}-1
$$

So $x_{n}-(-1)=2^{n}$, and has n the highest power of 2 dividing it. This says that $d\left(x^{n},-1\right)=1 / 2^{n}$. But since the numbers $1 / 2^{n} \rightarrow 0$ as $n \rightarrow \infty$, this shows that $x_{n} \rightarrow 1$, so the sequence converges.

MIT OpenCourseWare
http://ocw.mit.edu

18.100C Real Analysis

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

