Problem Set 3 Solutions, 18.100C, Fall 2012

September 26, 2012

1

We have a metric space (X, d), and define the function $d'(x, y) = \sqrt{d(x, y)}$. We wish to show that (X, d') is also a metric space with the same open sets as (X, d). We first check that d' is a metric.

(a) If $x \neq y$, then $d'(x,y) = \sqrt{d(x,y)} > 0$ since d(x,y) > 0, and similarly d'(x,x) = 0.

(b) $d'(x,y)=\sqrt{d(x,y)}=\sqrt{d(y,x)}=d'(y,x)$

(c) For the triangle inequality, we first need the following elementary

Fact: If $a, b \ge 0$, then $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$.

Indeed, squaring the right hand side gives $a + b + 2\sqrt{ab} \ge a + b$, and the square root function is order preserving. Using this fact, for $x, y, z \in X$ we have

$$d'(x,z) = \sqrt{d(x,z)} \le \sqrt{d(x,y) + d(y,z)} \le \sqrt{d(x,y)} + \sqrt{d(y,z)} = d'(x,y) + d'(y,z) \le \sqrt{d(x,y)} + \sqrt{d(y,z)} \le \sqrt{d(y,z)} \le \sqrt{d(x,y)} + \sqrt{d(y,z)} \le \sqrt$$

Now, let E be an open set for E. We need to show that it is open for d'. Let $x \in E$. Then there is some r > 0 such that the ball of radius r around x is contained in E, where the ball is taken with respect to d, i.e. $N_r(x) \subset E$. But the ball of radius r with respect to d is the ball of radius \sqrt{r} with respect to d', so there is a neighbourhood of x with respect to d' contained in E. In other words, E is open with respect to d. Similarly, a set that is open with respect to d' is also open with respect to d.

We prove the result for \mathbb{R}^n .

Lemma: \mathbb{Q}^n is dense in \mathbb{R}^n .

Proof: Just use the density of \mathbb{Q} in \mathbb{R} for each coordinate.

Theorem: Let $n \in \mathbb{N}$ and let $S \in \mathbb{R}^n$ be a set such that every point in S is isolated. Then S is at most countable.

Proof: Fix $s \in S$. Since s is an isolated point, there exists an $\tilde{r}_s > 0$ such that $N_{\tilde{r}_s}(s) \cap S = \{s\}$; let $r_s = \tilde{r}_s/2$ and pick an element $t_s \in N_{r_s}(s) \cap \mathbb{Q}^n$. Doing this for each s defines a function

$$f: S \to \mathbb{Q}^n, \ s \mapsto t_s$$

We now go about showing that f is injective; since \mathbb{Q}^n is countable this will show S is at most countable.

Suppose $f(s) = f(\tilde{s})$ and let t = f(s). Then $t = t_s = t_{\tilde{s}} \in N_{r_s}(s) \cap N_{r_{\tilde{s}}}(\tilde{s})$. Thus

 $d(s,\tilde{s}) \le d(t,s) + d(t,\tilde{s}) < r_s + r_{\tilde{s}} \le \max\{\tilde{r}_s,\tilde{r}_{\tilde{s}}\}$

so either $s \in N_{\tilde{r}_{\tilde{s}}}(\tilde{s})$ or $\tilde{s} \in N_{\tilde{r}_s}(s)$. In either case we obtain $s = \tilde{s}$.

3

X is a space where every infinite subset has a limit point. We first prove the following

Lemma 1: Let $\delta > 0$. Then there exists a finite set N_{δ} with the following properties: (a) For every $x, y \in N_{\delta}$, x = y, $d(x, y) \ge 0$. (b) For every $z \in X$, there exists a $y \in N_{\delta}$ such that $d(z, y) < \delta$.

Fix $\delta > 0$. We construct N_{δ} inductively. Pick an arbitrary $x_1 \in X$. Assume we have $x_1, x_2 \dots x_m$ with $d(x_i, x_j) \geq \delta$ for i = j. If every point of X is within δ of $\{x_1, \dots, x_m\}$, then we can take $N_{\delta} = \{x_1, \dots, x_m\}$ which satisfies (a) and (b) of the lemma. If not, we choose x_{m+1} such that $d(x_{m+1}, x_i) \geq \delta$ for $1 \leq i \leq m$.

 $\mathbf{2}$

We claim that this process must terminate at some finite M, at which point we are done. If not, then by this process we have constructed an infinite set $C = \{x_1, x_2, x_3 \dots\}$ with $d(x_i, x_j) \ge \delta$ for $i \ne j$. By our assumption on X, this set has a limit point x. Now consider the open neighbourhood $N_{\delta/4}(x)$. This must contain two distinct points $x_i \ne x_j \ne x$ (in fact, infinitely many points, by Theorem 2.20.) Using the triangle inequality, we have

$$\delta \le d(x_i, x_j) \le d(x_i, x) + d(x, x_j) < \delta/4 + \delta/4 = \delta/2$$

A contradiction.

Using the above Lemma, for each $m \in \mathbb{N}$, we have a finite set $N_{1/m}$ such that every point of X is within 1/m of some point of $N_{1/m}$. Let $D = \bigcup_m N_{1/m}$. D is a countable union of finite sets, and hence is countable. We claim that D is dense. Take any $x \in X$, and r > 0. Pick an m sufficiently large that 1/m < r. Then by definition there is a $y \in N_{1/m} \subset D$ such that d(x,y) < 1/m. But then $y \in N_r(x)$. Since x and r are arbitrary, this proves that D is dense.

4

Let $A = \{p \in \mathbb{R} | p = d(x, f(x) \text{ for some } x \in X\}$. Since distances are nonnegative A is bounded below by 0. Let $a = \inf A$. Obviously $a \ge 0$. We make the following claim, which we will prove later

Claim: There exists $x \in X$ such that d(x, f(x)) = a. In other words, the infimum is actually attained in A.

Now, assuming the claim, if a = 0, then we are done, since 0 = d(x, f(x)) so x = f(x) is a fixed point. So suppose a > 0. Then $x \neq f(x)$. Set y = f(x). Then we have $d(y, f(y)) \in A$, and

$$d(y, f(y)) = d(f(x), f(y)) < d(x, y) = d(x, f(x)) = a$$

Which is a contradiction, since a is a lower bound for A. So a = 0 and we are done.

Proof of the claim: suppose the claim is false. Define the set $U_n = \{x \in$

X|d(x, f(x)) > a+1/n. We claim that the sets U_n cover X. For any $x \in X$, since the inf is not attained, we must have d(x, f(x)) = a + r where r > 0. Take $n \in \mathbb{N}$ sufficiently large that r > 1/n. Then d(x, f(x)) > a + 1/n, so $x \in U_n$ and the U_n 's cover X.

We claim that U_n is open. To see this, let $x \in U_n$. Then d(x, f(x) > a + 1/n. Choose a small $\epsilon > 0$ such that $\epsilon < (d(x, f(x)) - a - 1/n)/2$; then $d(x, f(x)) - 2\epsilon > a + 1/n$. Then we have $N_{\epsilon}(x) \subset U_n$. To see this, let $y \in N_{\epsilon}(x)$. Note that $d(f(x), f(y)) < d(x, y) < \epsilon$ since f is contracting. Then using the triangle inequality twice, we have

 $d(x, f(x)) \leq d(x, y) + d(y, f(x)) \leq d(x, y) + d(y, f(y)) + d(f(y), f(x)) < \epsilon + d(y, f(y)) + \epsilon$

Rearranging this, we get

$$d(y, f(y)) > d(x, f(x)) - 2\epsilon > a + 1/n$$

So $y \in U_n$. Thus we have showed that every point of U_n has a neighbourhood contained entirely in U_n , so U_n is open.

In other words, we have constructed an open cover $\{U_n\}$ of X. Since X is compact, this cover has a finite subcover $\{U_{n_1}, \ldots, U_{n_m}\}$; assume we have labelled these such that $n_i < n_j$ for i < j. Note that the U_n are increasing, i.e. $U_m \subset U_n$ if m < n. Thus $U_{n_i} \subset U_{n_m}$, and so $\{U_{n_m}\}$ also covers X, i.e. $X = U_{n_m}$. But then for all $x \in X$, we have $d(x, f(x)) > a + 1/n_m$ by the definition of U_{n_m} . Thus $a + 1/n_m$ is a lower bound for A strictly larger than a, which contradicts the fact that $a = \inf A$. This proves the claim, and hence the result.

18.100C Real Analysis Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.