Problem Set 3 Solutions, 18.100C, Fall 2012

September 26, 2012

1
We have a metric space (X, d), and define the function $d^{\prime}(x, y)=\sqrt{d(x, y)}$. We wish to show that $\left(X, d^{\prime}\right)$ is also a metric space with the same open sets as (X, d). We first check that d^{\prime} is a metric.
(a) If $x \neq y$, then $d^{\prime}(x, y)=\sqrt{d(x, y)}>0$ since $d(x, y)>0$, and similarly $d^{\prime}(x, x)=0$.
(b) $d^{\prime}(x, y)=\sqrt{d(x, y)}=\sqrt{d(y, x)}=d^{\prime}(y, x)$
(c) For the triangle inequality, we first need the following elementary

Fact: If $a, b \geq 0$, then $\sqrt{a+b} \leq \sqrt{a}+\sqrt{b}$.
Indeed, squaring the right hand side gives $a+b+2 \sqrt{a b} \geq a+b$, and the square root function is order preserving. Using this fact, for $x, y, z \in X$ we have
$d^{\prime}(x, z)=\sqrt{d(x, z)} \leq \sqrt{d(x, y)+d(y, z)} \leq \sqrt{d(x, y)}+\sqrt{d(y, z)}=d^{\prime}(x, y)+d^{\prime}(y, z)$

Now, let E be an open set for E. We need to show that it is open for d^{\prime}. Let $x \in E$. Then there is some $r>0$ such that the ball of radius r around x is contained in E, where the ball is taken with respect to d, i.e. $N_{r}(x) \subset E$. But the ball of radius r with respect to d is the ball of radius \sqrt{r} with respect to d^{\prime}, so there is a neighbourhood of x with respect to d^{\prime} contained in E. In other words, E is open with respect to d^{\prime}. Similarly, a set that is open with respect to d^{\prime} is also open with respect to d.

We prove the result for \mathbb{R}^{n}.

Lemma: \mathbb{Q}^{n} is dense in \mathbb{R}^{n}.

Proof: Just use the density of \mathbb{Q} in \mathbb{R} for each coordinate.

Theorem: Let $n \in \mathbb{N}$ and let $S \in \mathbb{R}^{n}$ be a set such that every point in S is isolated. Then S is at most countable.

Proof: Fix $s \in S$. Since s is an isolated point, there exists an $\tilde{r}_{s}>0$ such that $N_{\tilde{r}_{s}}(s) \cap S=\{s\}$; let $r_{s}=\tilde{r}_{s} / 2$ and pick an element $t_{s} \in N_{r_{s}}(s) \cap \mathbb{Q}^{n}$. Doing this for each s defines a function

$$
f: S \rightarrow \mathbb{Q}^{n}, s \mapsto t_{s}
$$

We now go about showing that f is injective; since \mathbb{Q}^{n} is countable this will show S is at most countable.

Suppose $f(s)=f(\tilde{s})$ and let $t=f(s)$. Then $t=t_{s}=t_{\tilde{s}} \in N_{r_{s}}(s) \cap N_{r_{\tilde{s}}}(\tilde{s})$. Thus

$$
d(s, \tilde{s}) \leq d(t, s)+d(t, \tilde{s})<r_{s}+r_{\tilde{s}} \leq \max \left\{\tilde{r}_{s}, \tilde{r}_{\tilde{s}}\right\}
$$

so either $s \in N_{\tilde{r}_{\tilde{s}}}(\tilde{s})$ or $\tilde{s} \in N_{\tilde{r}_{s}}(s)$. In either case we obtain $s=\tilde{s}$.

3

X is a space where every infinite subset has a limit point. We first prove the following

Lemma 1: Let $\delta>0$. Then there exists a finite set N_{δ} with the following properties: (a) For every $x, y \in N_{\delta}, x=y, d(x, y) \geq 0$. (b) For every $z \in X$, there exists a $y \in N_{\delta}$ such that $d(z, y)<\delta$.

Fix $\delta>0$. We construct N_{δ} inductively. Pick an arbitrary $x_{1} \in X$. Assume we have $x_{1}, x_{2} \ldots x_{m}$ with $d\left(x_{i}, x_{j}\right) \geq \delta$ for $i=j$. If every point of X is within δ of $\left\{x_{1}, \ldots x_{m}\right\}$, then we can take $N_{\delta}=\left\{x_{1}, \ldots x_{m}\right\}$ which satisfies (a) and (b) of the lemma. If not, we choose x_{m+1} such that $d\left(x_{m+1}, x_{i}\right) \geq \delta$ for $1 \leq i \leq m$.

We claim that this process must terminate at some finite M, at which point we are done. If not, then by this process we have constructed an infinite set $C=\left\{x_{1}, x_{2}, x_{3} \ldots\right\}$ with $d\left(x_{i}, x_{j}\right) \geq \delta$ for $i \neq j$. By our assumption on X, this set has a limit point x. Now consider the open neighbourhood $N_{\delta / 4}(x)$. This must contain two distinct points $x_{i} \neq x_{j} \neq x$ (in fact, infinitely many points, by Theorem 2.20.) Using the triangle inequality, we have

$$
\delta \leq d\left(x_{i}, x_{j}\right) \leq d\left(x_{i}, x\right)+d\left(x, x_{j}\right)<\delta / 4+\delta / 4=\delta / 2
$$

A contradiction.
Using the above Lemma, for each $m \in \mathbb{N}$, we have a finite set $N_{1 / m}$ such that every point of X is within $1 / m$ of some point of $N_{1 / m}$. Let $D=\cup_{m} N_{1 / m}$. D is a countable union of finite sets, and hence is countable. We claim that D is dense. Take any $x \in X$, and $r>0$. Pick an m sufficiently large that $1 / m<r$. Then by definition there is a $y \in N_{1 / m} \subset D$ such that $d(x, y)<1 / m$. But then $y \in N_{r}(x)$. Since x and r are arbitrary, this proves that D is dense.

4

Let $A=\{p \in \mathbb{R} \mid p=d(x, f(x)$ for some $x \in X\}$. Since distances are nonnegative A is bounded below by 0 . Let $a=\inf A$. Obviously $a \geq 0$. We make the following claim, which we will prove later

Claim: There exists $x \in X$ such that $d(x, f(x))=a$. In other words, the infimum is actually attained in A.

Now, assuming the claim, if $a=0$, then we are done, since $0=d(x, f(x))$ so $x=f(x)$ is a fixed point. So suppose $a>0$. Then $x \neq f(x)$. Set $y=f(x)$. Then we have $d(y, f(y)) \in A$, and

$$
d(y, f(y))=d(f(x), f(y))<d(x, y)=d(x, f(x))=a
$$

Which is a contradiction, since a is a lower bound for A. So $a=0$ and we are done.

Proof of the claim: suppose the claim is false. Define the set $U_{n}=\{x \in$
$X \mid d(x, f(x))>a+1 / n\}$. We claim that the sets U_{n} cover X. For any $x \in X$, since the inf is not attained, we must have $d(x, f(x))=a+r$ where $r>0$. Take $n \in \mathbb{N}$ sufficiently large that $r>1 / n$. Then $d(x, f(x))>a+1 / n$, so $x \in U_{n}$ and the U_{n} 's cover X.

We claim that U_{n} is open. To see this, let $x \in U_{n}$. Then $d(x, f(x)>$ $a+1 / n$. Choose a small $\epsilon>0$ such that $\epsilon<(d(x, f(x))-a-1 / n) / 2$; then $d(x, f(x))-2 \epsilon>a+1 / n$. Then we have $N_{\epsilon}(x) \subset U_{n}$. To see this, let $y \in N_{\epsilon}(x)$. Note that $d(f(x), f(y))<d(x, y)<\epsilon$ since f is contracting. Then using the triangle inequality twice, we have
$d(x, f(x)) \leq d(x, y)+d(y, f(x)) \leq d(x, y)+d(y, f(y))+d(f(y), f(x))<\epsilon+d(y, f(y))+\epsilon$

Rearranging this, we get

$$
d(y, f(y))>d(x, f(x))-2 \epsilon>a+1 / n
$$

So $y \in U_{n}$. Thus we have showed that every point of U_{n} has a neighbourhood contained entirely in U_{n}, so U_{n} is open.

In other words, we have constructed an open cover $\left\{U_{n}\right\}$ of X. Since X is compact, this cover has a finite subcover $\left\{U_{n_{1}}, \ldots U_{n_{m}}\right\}$; assume we have labelled these such that $n_{i}<n_{j}$ for $i<j$. Note that the U_{n} are increasing, i.e. $U_{m} \subset U_{n}$ if $m<n$. Thus $U_{n_{i}} \subset U_{n_{m}}$, and so $\left\{U_{n_{m}}\right\}$ also covers X, i.e. $X=U_{n_{m}}$. But then for all $x \in X$, we have $d(x, f(x))>a+1 / n_{m}$ by the definition of $U_{n_{m}}$. Thus $a+1 / n_{m}$ is a lower bound for A strictly larger than a, which contradicts the fact that $a=\inf A$. This proves the claim, and hence the result.

MIT OpenCourseWare
http://ocw.mit.edu

18.100C Real Analysis

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

