

September 20, 2012

1

We define

$$
F=\mathbb{Q}=\{a+\sqrt{2} b \mid a, b \in \mathbb{Q}\} \subset \mathbb{R}
$$

We wish to show that F is a subfield of \mathbb{R}. In order to show this, we need to show that a) $0,1 \in F ;$ b) F is closed under addition and multiplication; and c) if $x \in F$ and $x \neq 0$, then $-x \in F$ and $1 / x \in F$. The commutative, associate, and distributive properties all follow from the corresponding properties on \mathbb{R}.
a), b), and the first half of c) are straightforward; we have $0=0+0 \sqrt{2} \in F$ and $1=1+0 \sqrt{2} \in F$. For b), we have

$$
(a+b \sqrt{2})+(c+d \sqrt{2})=(a+c)+(b+d) \sqrt{2} \in F
$$

and

$$
(a+b \sqrt{2})(c+d \sqrt{2})=(a b+2 c d)+(a d+b c) \sqrt{2} \in F .
$$

If $x=a+b \sqrt{2}$, then $-x=(-a)+(-b) \sqrt{2} \in F$. So the only fact remaining to show is that F is closed under multiplicative inverses.

To prove this, we need the following
Fact: if $0=a+b \sqrt{2} \in F$, then $a=b=0$

Proof: Suppose $b \neq 0$. Then $\sqrt{2}=-a / b \in \mathbb{Q}$, a contradiction. So we must have $b=0$, and then $0=a+0=a$.

Now take $x=a+b \sqrt{2} \in F, x \neq 0$. By the above fact, $a-b \sqrt{2}$ is also nonzero, and hence

$$
a^{2}-2 b^{2}=(a+b \sqrt{2})(a-b \sqrt{2}) \neq 0
$$

Since the product of non-zero real numbers is non-zero.
So we can define $c=a /\left(a^{2}-2 b^{2}\right) \in \mathbb{Q}, d=-b /\left(a^{2}-2 b^{2}\right) \in \mathbb{Q}$, and $y=c+d \sqrt{2} \in F$. I claim that $x y=1$, so $y=1 / x$ and F contains multiplicative inverses. Indeed,

$$
(a+b \sqrt{2})(c+d \sqrt{2})=\frac{1}{a^{2}-2 b^{2}}(a+b \sqrt{2})(a-b \sqrt{2})=\frac{a^{2}-2 b^{2}}{a^{2}-2 b^{2}}=1
$$

and we are done.

2

Problem 11 from page 23.

Let $z=a+b i \in \mathbb{C}$. We wish to show that $z=r w$, where $r \geq 0$ is a positive real number and w is a complex number with $|w|=1$. Suppose $z=0$. Then we can take $r=0$ and $w=1$. If $z \neq 0$, we take $r=|z|>0$, ($r>0$ by theorem 1.33(a)) and take $w=z / r$. Then obviously $z=r w$, and

$$
|w|=\left|\frac{z}{r}\right|=\frac{|z|}{|z|}=1
$$

by theorem $1.33(\mathrm{c})$. As for uniqueness, r is always determined by z; indeed, if $z=r w$, we must have $|z|=|r w|=|r| \cdot|w|=|r|=r$, since $r \geq 0$. If $z=0, w$ is not determined by z, since for any $w, r w=0 w=0=z$. However, if $z \neq 0$, then $r \neq 0$, and then we must have $w=z / r$. So w is determined by z so long as $z \neq 0$.

3

Problem 9 from page 43.
Let X be a metric space and $E \subset X$.
a
Let $p \in E^{\circ}$. By definition, p is an interior point of E, so there exists an $r>0$ such that $N_{r}(p) \subset E$. If we can show $N_{r}(p) \subset E^{\circ}$ it will follow that p is an interior point of E°, and thus E° is open. But for any $q \in N_{r}(p)$ we have

$$
N_{r-d(p, q)}(q) \subset N_{r}(p) \subset E,
$$

which implies $q \in E^{\circ}$, as required.
(For the above inclusion we use the triangle inequality:

$$
\begin{gathered}
x \in N_{r-d(p, q)}(q) \Longrightarrow d(x, q)<r-d(p, q) \Longrightarrow d(x, p) \leq d(x, q)+d(p, q)<r \\
\left.\Longrightarrow x \in N_{r}(p) .\right)
\end{gathered}
$$

b
E is open \Longleftrightarrow every point of E is an interior point of $E \Longleftrightarrow E \subset E^{\circ}$.
It is clear that we always have $E^{\circ} \subset E$ (since a neighborhood of a point contains the point). Hence, E is open if and only if $E^{\circ}=E$.
c
Let $G \subset E$ and suppose G is open. Given $p \in G$, there exists an $r>0$ such that $N_{r}(p) \subset G$. Since $G \subset E$ we have

$$
N_{r}(p) \subset E
$$

and so $p \in E^{\circ}$.
d
By definition, $x \in E^{\circ}$ if and only if there exists an $r>0$ such that $N_{r}(x) \subset E$. Thus, $x \notin E^{\circ}$ if and only if for all $r>0, N_{r}(x) \cap(X \backslash E) \neq \emptyset$.

Suppose that for all $r>0, N_{r}(x) \cap(X \backslash E) \neq \emptyset$. Then either $x \in X \backslash E$
or x is a limit point of $X \backslash E$, i.e. $x \in \overline{X \backslash E}$. Conversely, if $x \in \overline{X \backslash E}$, then either $x \in X \backslash E$ or x is a limit point of $X \backslash E$ and in either case $N_{r}(x) \cap(X \backslash E) \neq \emptyset$, for all $r>0$.
e, f
No, in both cases. Let $X=\mathbb{R}$ and $E=\mathbb{Q}$.
Claim: $E^{\circ}=\emptyset$ and $\bar{E}=X$.

Proof: Let $x \in X$. Then for each $r>0$, there exists a $q_{r} \in E$ with $x<q_{r}<x+r$. Thus

$$
q_{r} \in\left(N_{r}(x) \backslash\{x\}\right) \cap E \neq \emptyset
$$

for each $r>0$. This says x is a limit point of E and so $x \in \bar{E}$, giving $\bar{E}=X$. Similarly, $\overline{X \backslash E}=X$ and so $X \backslash E^{\circ}=X$, which gives $E^{\circ}=\emptyset$.

One easily sees $\overline{E^{\circ}}=\emptyset$ and $(\bar{E})^{\circ}=X$ and so we have counterexamples.

4

Problem 29 from page 45

Let $A \subset \mathbb{R}$ open. We will first show that A can be written as a union of disjoint open intervals, and then show that this collection of intervals is necessarily countable.

Let $x \in A$. We define the sets L_{x} and U_{x} by

$$
L_{x}=\{y \in \mathbb{R} \mid y \leq x,[y, x] \subset A\}, U_{x}=\{y \in \mathbb{R} \mid y \geq x,[x, y] \subset A\}
$$

Since A is open, for all $\epsilon>0$ sufficiently small, $x \pm \epsilon \in A$, so L_{x} and U_{x} both contain elements other than x. Note that $L_{x}, U_{x} \subset A$. Let $c_{x}=\inf L_{x}$, and $d_{x}=\sup U_{x}$; it is possible that c_{x} could be $-\infty$, and d_{x} could be ∞.

Claim 1: $\left(c_{x}, x\right] \subset A$ and $\left[x, d_{x}\right) \subset A$

Proof: If $y \in\left(c_{x}, x\right)$, then since c_{x} is the inf of L_{x}, y cannot a lower bound for L_{x}. So there is some y^{\prime} with $c_{x}<y^{\prime}<y$ such that $y^{\prime} \in L_{x}$, or $\left[y^{\prime}, x\right] \subset A$, which implies $y \in A$ (in fact $y \in L_{x}$). The same argument applies for d_{x}.

Claim 2: $c_{x} \notin A$ and $d_{x} \notin A$
Proof: This is immediate if $c_{x}=-\infty$. So suppose $c_{x}>-\infty$ and $c_{x} \in A$. Since A is open, there exists an $\epsilon>0$ such that $\left[c_{x}-\epsilon, c\right] \subset A$ (take any $\epsilon<r$ where $B_{r}\left(c_{x}\right) \subset A$.) But then $\left[c_{x}-\epsilon, c_{x}\right] \cup\left[c_{x}, x\right]=\left[c_{x}-\epsilon, x\right] \subset A$, so $c_{x}-\epsilon \in L_{x}$, which is a contradiction since c_{x} is the inf of L_{x}. The same argument applies for d_{x}.

Claim 3: $\left(c_{x}, x\right]=L_{x}$ and $\left[x, d_{x}\right)=U_{x}$

Proof: The proof of claim 1 shows that $\left(c_{x}, x\right) \subset L_{x}$. Conversely, if $y \in L_{x}$, then $c_{x} \leq y \leq x$, and by claim $2 y \neq c_{x}$, so $c_{x}<y$ and $y \in\left(c_{x}, x\right]$.

We can now define $E_{x}=L_{x} \cup U_{x}=\left(c_{x}, d_{x}\right)$; one should think of E_{x} as the largest open interval around x contained in A. Note that $E_{x} \subset A$, so $\bigcup_{x \in A} E_{x} \subset A$, and conversely if $x \in A$ then $x \in E_{x} \subset \bigcup_{x \in A} E_{x}$, and so $A=\bigcup_{x \in A} E_{x}$.

Claim 4: If $x, y \in A$, then either $E_{x}=E_{y}$ or $E_{x} \cap E_{y}=\emptyset$.
Proof: Suppose $E_{x} \neq E_{y}$, and write $E_{x}=(c, d)$ and $E_{y}=(e, f)$. Without loss of generality assume $c \leq e$. If $e=c$, then $d \neq f$; without loss of generality $d<f$. Then $d \in E_{y} \subset A$; however, by claim $2 d \notin A$, a contradiction. So we can assume $c<e$. If $e<d$, then $e \in E_{x} \subset A$; however, again by Claim $2 e \notin A$, a contradiction. So $e \geq d$, which implies that (e, f) is disjoint from (c, d).

In other words, let $\mathcal{U}=\left\{E_{x} \mid x \in A\right\}$. Then \mathcal{U} is a collection of open intervals whose union is equal to A; by Claim 4 all of the intervals in \mathcal{U} are disjoint (think carefully about what Claim 4 says if this isn't obvious to you.)

We still have to show that \mathcal{U} is countable (by countable I mean either finite or countably infinite.) We will do so by defining an injective map $f: \mathcal{U} \rightarrow \mathbb{Q}$. Let $E \in \mathcal{U}$. Then E is an open interval (c, d); pick a rational number $q_{E} \in(c, d)=E$. Make such a choice for every interval in $\mathcal{U} .\left({ }^{*}\right) \mathrm{We}$ define the map $f: \mathcal{U} \rightarrow \mathbb{Q}$ by $f(E)=q_{E}$.

Claim 5: f is injective
Proof: Suppose $f(E)=f\left(E^{\prime}\right)$. Then $q_{E} \in E \cap E^{\prime}$ by the definition of f. But the intervals in \mathcal{U} are disjoint, so $E=E^{\prime}$.

Thus, via f, \mathcal{U} is bijective to a subset of \mathbb{Q}. But \mathbb{Q} is countable, and by theorem 2.8 in Rudin every subset of a countable set is countable. Hence \mathcal{U} is countable.
${ }^{(*)}$ For those who know some Set Theory, you need to the full Axiom of Choice to make these choices. If you don't know what that means, don't worry.

MIT OpenCourseWare
http://ocw.mit.edu

18.100C Real Analysis

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

