Problem Set 10 Solutions, 18.100C, Fall 2012

December 5, 2012

1

We have a continuous $K:[0,1] \times[0,1] \rightarrow \mathbb{R}$ which is continuous. For each fixed $x \in[0,1]$, the function $y \mapsto K(x, y)$ is thus a continuous function from $[0,1] \rightarrow \mathbb{R}$, hence is Riemann-integrable. Since $f:[0,1] \rightarrow \mathbb{R}$ is Riemannintegrable by assumption and the product of two integrable functions is integrable (Rudin 6.13), we conclude that

$$
g(x)=\int_{0}^{1} K(x, y) f(y) d y
$$

Is well-defined. We will show that it is continuous.
Let $\epsilon>0$. By Rudin 6.13, $|f|$ is also Riemann-integrable. Pick $M \in \mathbb{R}$ sufficiently large that

$$
\int_{0}^{1}|f(y)| d y<M
$$

K is a continuous function on the compact set $[0,1] \times[0,1]$, hence is uniformally continuous. Thus, there exists $\delta>0$ such that

$$
\sqrt{\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}}<\delta \Longrightarrow\left|K\left(x^{\prime}, y^{\prime}\right)-K(x, y)\right|<\frac{\epsilon}{M}
$$

For $\left\{x, x^{\prime}, y, y^{\prime}\right\} \subset[0,1]$. In particular,

$$
\left|x^{\prime}-x\right|<\delta \Longrightarrow\left|K\left(x^{\prime}, y\right)-K(x, y)\right|<\frac{\epsilon}{M}
$$

Thus, for $\left|x^{\prime}-x\right|<\delta$, we have

$$
\begin{gathered}
\left|g\left(x^{\prime}\right)-g(x)\right|=\left|\int_{0}^{1} K\left(x^{\prime}, y\right) f(y) d y-\int_{0}^{1} K(x, y) f(y) d y\right| \\
=\left|\int_{0}^{1}\left(K\left(x^{\prime}, y\right)-K(x, y)\right) f(y) d y\right| \leq \int\left|K\left(x^{\prime}, y\right)-K(x, y)\right| \cdot|f(y)| d y \\
<\frac{\epsilon}{M} \int_{0}^{1}|f(y)| d y<\epsilon
\end{gathered}
$$

Which proves the (uniform) continuity of g.

2

Let $a, b \in \mathbb{R}$. I claim that $\max (a, b)=(a+b+|a-b|) / 2$. There are three cases.
$a=b$: Then $(a+b+|a-b|) / 2=a=\max (a, b)$.
$a>b:$ Then $(a+b+|a-b|) / 2=(a+b+a-b) / 2=a=\max (a, b)$.
$a<b$: Then $(a+b+|a-b|) / 2=(a+b+b-a) / 2=b=\max (a, b)$.
Now suppose f and g are Riemann-Stieltjes integrable for some α. Then $f-g$ is integrable, hence so is $|f-g|$, hence so is $(f+g+|f-g|) / 2=\max (f, g)$.

3

a
Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Then by theorem $6.8, f^{2} \in \mathcal{R}$. By assumption there exists $x_{0} \in[a, b]$ with $f\left(x_{0}\right) \neq 0$. Because f^{2} is continuous at x_{0} there exists a $\delta>0$ such that

$$
x \in[a, b],\left|x-x_{0}\right|<\delta \Longrightarrow\left|f^{2}(x)-f^{2}\left(x_{0}\right)\right|<\left|f^{2}\left(x_{0}\right)\right| / 2
$$

Thus

$$
x \in[a, b],\left|x-x_{0}\right|<\delta \Longrightarrow\left|f^{2}(x)\right|>\left|f^{2}\left(x_{0}\right)\right| / 2
$$

By definition

$$
\int_{a}^{b} f^{2}(x) d x=\sup L\left(P, f^{2}\right) \quad \text { and } \quad L\left(P, f^{2}\right)=\sum_{i=1}^{n} m_{i} \Delta x_{i}
$$

If we choose a partition P with two points in $[a, b] \cap\left(x_{0}-\delta, x_{0}+\delta\right)$ then at least one of the m_{i} 's is strictly greater than zero and the rest are all greater than or equal to zero. Thus for this partition $L(P, f)>0$ and we obtain $\int f^{2}>0$.

b

Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous and suppose that $\int_{0}^{1} x^{n} f(x) d x=0$ for all $n \in \mathbb{N}$. From linearity of the integral we deduce that $\int_{0}^{1} p(x) f(x) d x=0$ for all polynomials p. Weierstrass' theorem says that we can find a sequence of polynomials $\left(p_{n}\right)$ converging uniformly to f. Since f is bounded $\left(p_{n} f\right)$ converges uniformly to f^{2}. Then

$$
\int_{0}^{1} p_{n}(x) f(x) d x \rightarrow \int_{0}^{1} f(x)^{2} d x
$$

giving $\int_{0}^{1} f(x)^{2} d x=0$. Since f^{2} is positive and continuous this implies that $f^{2}=0$ and so $f=0$.

MIT OpenCourseWare
http://ocw.mit.edu

18.100C Real Analysis

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

