ℓ^{p} IS COMPLETE

Let $1 \leq p \leq \infty$, and recall the definition of the metric space ℓ^{p} :
For $1 \leq p<\infty, \ell^{p}=\left\{\right.$ sequences $\mathbf{a}=\left(a_{n}\right)_{n=1}^{\infty}$ in \mathbb{R} such that $\left.\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}<\infty\right\} ;$
whereas ℓ^{∞} consists of all those sequences $\mathbf{a}=\left(a_{n}\right)_{n=1}^{\infty}$ such that $\sup _{n \in \mathbb{N}}\left|a_{n}\right|<\infty$. We defined the p-norm as the function $\|\cdot\|_{p}: \ell^{p} \rightarrow[0, \infty)$, given by

$$
\|\mathbf{a}\|_{p}=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{1 / p}, \text { for } 1 \leq p<\infty
$$

and $\|\mathbf{a}\|_{\infty}=\sup _{n \in \mathbb{N}}\left|a_{n}\right|$. In class, we showed that the function $d_{p}: \ell^{p} \times \ell^{p} \rightarrow[0, \infty)$ given by $d_{p}(\mathbf{a}, \mathbf{b})=\|\mathbf{a}-\mathbf{b}\|_{p}$ is actually a metric. We now proceed to show that $\left(\ell^{p}, d_{p}\right)$ is a complete metric space for $1 \leq p \leq \infty$. For convenience, we will work with the case $p<\infty$, as the case $p=\infty$ requires slightly different language (although the same ideas apply).

Suppose that $\mathbf{a}^{1}, \mathbf{a}^{2}, \mathbf{a}^{3}, \ldots$ is a Cauchy sequence in ℓ^{p}. Note, each term \mathbf{a}^{k} in the sequence is a point in ℓ^{p}, and so is itself a sequence:

$$
\mathbf{a}^{k}=\left(a_{1}^{k}, a_{2}^{k}, a_{3}^{k}, \ldots\right)
$$

Now, to say that $\left(\mathbf{a}^{k}\right)_{k=1}^{\infty}$ is a Cauchy sequence in ℓ^{p} is precisely to say that

$$
\forall \epsilon>0 \exists K \in \mathbb{N} \text { s.t. } \forall k, m \geq K,\left\|\mathbf{a}^{k}-\mathbf{a}^{m}\right\|_{p}<\epsilon .
$$

That is, for given $\epsilon>0$ and sufficiently large k, m, we have

$$
\sum_{n=1}^{\infty}\left|a_{n}^{k}-a_{n}^{m}\right|^{p}=\left\|\mathbf{a}^{k}-\mathbf{a}^{m}\right\|_{p}^{p}<\epsilon^{p}
$$

Now, the above series has all non-negative terms, and hence is an upper bound for any fixed term in the series. That is to say, for fixed $n_{0} \in \mathbb{N}$,

$$
\left|a_{n_{0}}^{k}-a_{n_{0}}^{m}\right| \leq \sum_{n=1}^{\infty}\left|a_{n}^{k}-a_{n}^{m}\right|^{p}<\epsilon^{p}
$$

and so we see that the sequence $\left(a_{n_{0}}^{k}\right)_{k=1}^{\infty}$ is a Cauchy sequence in \mathbb{R}. But we know that \mathbb{R} is a complete metric space, and thus there is a limit $a_{n_{0}} \in \mathbb{R}$ to this sequence. This holds for each $n_{0} \in \mathbb{N}$. The following diagram illustrates what's going on.

$$
\begin{array}{ccccccc}
\mathbf{a}^{1}= & a_{1}^{1} & a_{2}^{1} & a_{3}^{1} & a_{4}^{1} & \cdots \\
\mathbf{a}^{2} & = & a_{1}^{2} & a_{2}^{2} & a_{3}^{2} & a_{4}^{2} & \cdots \\
\mathbf{a}^{3} & = & a_{1}^{3} & a_{2}^{3} & a_{3}^{3} & a_{4}^{3} & \cdots \\
\mathbf{a}^{4}= & a_{1}^{4} & a_{2}^{4} & a_{3}^{4} & a_{4}^{4} & \cdots \\
& & \vdots & \vdots & \vdots & \vdots & \ddots \\
& & \downarrow & \downarrow & \downarrow & \downarrow & \\
& & a_{1} & a_{2} & a_{3} & a_{4} & \cdots
\end{array}
$$

So, we have shown that, in this ℓ^{p}-Cauchy sequence of horizontal sequences, each vertical sequence actually converges. Hence, there is a sequence $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}, \ldots\right)$ to which " a^{k} converges" in a vague sense. The sense is the "point-wise convergence" along vertical
lines in the above diagram. To be more precise, recall that a sequence \mathbf{a} is a function a: $\mathbb{N} \rightarrow \mathbb{R}$, where we customarily write $\mathbf{a}(n)=a_{n}$. What we have shown is that, if $\left(\mathbf{a}^{1}, \mathbf{a}^{2}, \mathbf{a}^{3}, \ldots\right)$ is a Cauchy sequence of such ℓ^{p} functions, then there is a function $\mathbf{a}: \mathbb{N} \rightarrow \mathbb{R}$ such that \mathbf{a}^{k} converges to a point-wise; i.e. $\mathbf{a}^{k}(n) \rightarrow \mathbf{a}(n)$ for each $n \in \mathbb{N}$.

Now, our goal is to find a point $\mathbf{b} \in \ell^{p}$ such that $\mathbf{a}^{k} \rightarrow \mathbf{b}$ as $k \rightarrow \infty$ in the sense of ℓ^{p}; that is, such that $\left\|\mathbf{a}^{k}-\mathbf{b}\right\|_{p} \rightarrow 0$ as $k \rightarrow \infty$. The putative choice for this \mathbf{b} is the sequence \mathbf{a} given above. In order to show that one works, we need to show first that it is actually an ℓ^{p} sequence, and second that \mathbf{a}^{k} converges to a in ℓ^{p} sense, not just point-wise.

To do this, it is convenient to first pass to a family of subsequences of the $\left(a_{n}^{k}\right)$, as follows. Since $\left(a_{1}^{k}\right)_{k=1}^{\infty}$ converges to a_{1}, we can choose k_{1} so that for $k \geq k_{1},\left|a_{1}^{k_{1}}-a_{1}\right|<\frac{1}{2}$. Having done so, and knowing that $a_{2}^{k} \rightarrow a_{2}$, we can choose a larger k_{2} so that for $k \geq k_{2}$, we have $\left|a_{1}^{k}-a_{1}\right|<\frac{1}{4}$ and $\left|a_{2}^{k}-a_{2}\right|<\frac{1}{4}$. Continuing this way iteratively, we can find an increasing sequence of integers $k_{1}<k_{2}<k_{3}<\cdots$ such that

$$
\begin{equation*}
\text { for each } j \in \mathbb{N},\left|a_{n}^{k}-a_{n}\right|<2^{-j} \text { for } n=1,2, \ldots, j \text { and } k \geq k_{j} . \tag{1}
\end{equation*}
$$

In particular, we have $\left|a_{n}^{k_{j}}-a_{n}\right|<2^{-j}$ for $j \geq n$. That gives us the following.
Lemma 1. The sequence $\mathbf{a}=\left(a_{n}\right)_{n=1}^{\infty}$ of point-wise limits of $\left(\mathbf{a}^{k}\right)_{k=1}^{\infty}$ is in ℓ^{p}.
Proof. Fix $N \in \mathbb{N}$, and recall that the finite-dimensional versions of the ℓ^{p}-norms,

$$
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{p}=\left(\sum_{n=1}^{N}\left|a_{n}\right|^{p}\right)^{1 / p}
$$

also satisfy the triangle inequality (i.e. $d_{p}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|_{p}$ is a metric on \mathbb{R}^{N}). Hence, we can estimate the initial-segment of N terms of a as follows:

$$
a_{n}=\left(a_{n}-a_{n}^{k_{N}}\right)+a_{n}^{k_{N}},
$$

and so

$$
\begin{equation*}
\left(\sum_{n=1}^{N}\left|a_{n}\right|^{p}\right)^{1 / p} \leq\left(\sum_{n=1}^{N}\left|a_{n}-a_{n}^{k_{N}}\right|^{p}\right)^{1 / p}+\left(\sum_{n=1}^{N}\left|a_{n}^{k_{N}}\right|^{p}\right)^{1 / p} . \tag{2}
\end{equation*}
$$

Now, the last term in Equation 2 is bounded by the actual ℓ^{p}-norm of the whole sequence $\mathbf{a}^{k_{N}}$; that is, we can tack on the infinitely many more terms,

$$
\left(\sum_{n=1}^{N}\left|a_{n}^{k_{N}}\right|^{p}\right)^{1 / p} \leq\left(\sum_{n=1}^{\infty}\left|a_{n}^{k_{N}}\right|^{p}\right)^{1 / p}=\left\|\mathbf{a}^{k_{N}}\right\|_{p}
$$

Recall that $\left(\mathbf{a}^{k}\right)_{k=1}^{\infty}$ is a Cauchy sequence in the metric space ℓ^{p}. We have proved that any Cauchy sequence in a metric space is bounded. Thus, there is a constant R independent of N such that $\left\|\mathbf{a}^{k_{N}}\right\|_{p} \leq R$. Combining this with Equation 1, we can therefore estimate the right-hand-side of Equation 2 by

$$
\left(\sum_{n=1}^{N}\left|a_{n}\right|^{p}\right)^{1 / p} \leq\left(\sum_{n=1}^{N}\left(2^{-N}\right)^{p}\right)^{1 / p}+R=\left(N 2^{-N p}\right)^{1 / p}+R .
$$

Finally, the term $\left(N 2^{-N p}\right)^{1 / p}=N^{1 / p} 2^{-N}$ converges to 0 as $N \rightarrow \infty$ (remember your calculus!), and hence this sequence is also bounded by some constant S. In total, then, we have

$$
\left(\sum_{n=1}^{N}\left|a_{n}\right|^{p}\right)^{1 / p} \leq R+S \text { for all } N \in \mathbb{N}
$$

In other words, $\sum_{n=1}^{N}\left|a_{n}\right|^{p} \leq(R+S)^{p}$. The constant on the right does not depend on N; it is an upper bound for the increasing sequence of partial sums of the series $\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}=$ $\|\mathbf{a}\|_{p}^{p}$. Thus, we have $\|\mathbf{a}\|_{p} \leq R+S$, and so $\mathbf{a} \in \ell^{p}$.

So, we have shown that the putative limit a (the point-wise limit of the sequence $\left(\mathbf{a}^{k}\right)_{k=1}^{\infty}$ of points in ℓ^{p}) is actually an element of the metric space ℓ^{p}. But we have yet to show that it is the limit of the sequence $\left(\mathbf{a}^{k}\right)$ in ℓ^{p}. That somewhat involved proof now follows.
Proposition 2. Let $\left(\mathbf{a}^{k}\right)_{k=1}^{\infty}$ be a Cauchy sequence in ℓ^{p}, and let \mathbf{a} be its point-wise limit (which is in ℓ^{p}, by Lemma 1). Then $\left\|\mathbf{a}^{k}-\mathbf{a}\right\|_{p} \rightarrow 0$ as $k \rightarrow \infty$.
Proof. Let $\epsilon>0$. Lemma 1 shows that $\mathbf{a} \in \ell^{p}$, which means that $\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}<\infty$. Hence, by the Cauchy criterion, there is an $N_{1} \in \mathbb{N}$ so that

$$
\sum_{n=N_{1}}^{\infty}\left|a_{n}\right|^{p}<\epsilon^{p}
$$

In addition, we know that $\left(\mathbf{a}^{k}\right)_{k=1}^{\infty}$ is ℓ^{p}-Cauchy, so there is N_{2} so that, whenever $k, m \geq N_{2}$, $\left\|\mathbf{a}^{k}-\mathbf{a}^{m}\right\|_{p}<\epsilon$. Letting $N=\max \left\{N_{1}, N_{2}\right\}$, we therefore have

$$
\begin{equation*}
\sum_{n=N}^{\infty}\left|a_{n}\right|^{p}<\epsilon^{p} \text { and }\left\|\mathbf{a}^{N}-\mathbf{a}^{k}\right\|_{p}<\epsilon \forall k \geq N \tag{3}
\end{equation*}
$$

Now, the sequence \mathbf{a}^{N} is in ℓ^{p}, and so we can apply the Cauchy criterion again: select N^{\prime} large enough so that

$$
\begin{equation*}
\sum_{n=N^{\prime}}^{\infty}\left|a_{n}^{N}\right|^{p}<\epsilon^{p} . \tag{4}
\end{equation*}
$$

Note, we can always increase N^{\prime} and still maintain this estimate, so we are free to chose $N^{\prime} \geq N$.

We now use the constant N^{\prime} we defined above in the bounds we will need later. Since $a_{n}^{k} \rightarrow a_{n}$ for each fixed n, we can choose K_{1} so that $\left|a_{1}^{k}-a_{1}\right|<\epsilon^{p} / N^{\prime}$ for $k \geq K_{1}$. Likewise, we can choose K_{2} so that $\left|a_{2}^{k}-a_{2}\right|<\epsilon^{p} / N^{\prime}$ for $k \geq K_{2}$. Continuing this way for N^{\prime} steps, we can take $K=\max \left\{K_{1}, K_{2}, \ldots, K_{N^{\prime}}\right\}$ and then we have

$$
\begin{equation*}
\left|a_{n}^{k}-a_{n}\right|<\frac{\epsilon^{p}}{N^{\prime}}, \text { for } k \geq K \text { and } n \leq N^{\prime} \tag{5}
\end{equation*}
$$

For good measure, we will also (increasing it if necessary) make sure that $K \geq N^{\prime}$. Now, for any $k \geq K$, break up $\mathbf{b}=\mathbf{a}^{k}-\mathbf{a}$ as follows:

$$
\left(b_{n}\right)_{n=1}^{\infty}=\left(b_{n}\right)_{n=1}^{N^{\prime}-1}+\left(b_{n}\right)_{n=N^{\prime}}^{\infty} .
$$

(To be a little more pedantic, we are expressing $b_{n}=x_{n}+y_{n}$ where $x_{n}=b_{n}$ when $n<N^{\prime}$ and $=0$ when $n \geq N^{\prime}$, and $y_{n}=0$ when $n<N^{\prime}$ and $=b_{n}$ when $n \geq N^{\prime}$.) The triangle inequality for the p-norm then gives

$$
\begin{equation*}
\left\|\mathbf{a}^{k}-\mathbf{a}\right\|_{p} \leq\left(\sum_{n=1}^{N^{\prime}-1}\left|a_{n}^{k}-a_{n}\right|^{p}\right)^{1 / p}+\left(\sum_{n=N^{\prime}}^{\infty}\left|a_{n}^{k}-a_{n}\right|^{p}\right)^{1 / p} \tag{6}
\end{equation*}
$$

Equation 5 shows that, for $k \geq K$, the first term here is

$$
\left(\sum_{n=1}^{N^{\prime}-1}\left|a_{n}^{k}-a_{n}\right|^{p}\right)^{1 / p} \leq\left(\sum_{n=1}^{N^{\prime}-1} \frac{\epsilon^{p}}{N^{\prime}}\right)^{1 / p}=\left(\frac{N^{\prime}-1}{N^{\prime}}\right)^{1 / p} \epsilon<\epsilon
$$

For the second term in Equation 6, we use the triangle inequality for the ℓ^{p}-norm restricted to the range $n \geq N^{\prime}$ to get

$$
\left(\sum_{n=N^{\prime}}^{\infty}\left|a_{n}^{k}-a_{n}\right|^{p}\right)^{1 / p} \leq\left(\sum_{n=N^{\prime}}^{\infty}\left|a_{n}^{k}\right|^{p}\right)^{1 / p}+\left(\sum_{n=N^{\prime}}^{\infty}\left|a_{n}\right|^{p}\right)^{1 / p}
$$

Since $N^{\prime} \geq N$, Equation 3 shows that the second term here is $<\epsilon$. So, summing up the last two estimates, we have

$$
\begin{equation*}
\left\|\mathbf{a}^{k}-\mathbf{a}\right\|_{p} \leq 2 \epsilon+\left(\sum_{n=N^{\prime}}^{\infty}\left|a_{n}^{k}\right|^{p}\right)^{1 / p} \tag{7}
\end{equation*}
$$

whenever $k \geq K$. So we need only show this final term is small. Here we make one more decomposition: $a_{n}^{k}=a_{n}^{k}-a_{n}^{N}+a_{n}^{N}$, and so once again applying the triangle inequality,

$$
\left(\sum_{n=N^{\prime}}^{\infty}\left|a_{n}^{k}\right|^{p}\right)^{1 / p} \leq\left(\sum_{n=N^{\prime}}^{\infty}\left|a_{n}^{k}-a_{n}^{N}\right|^{p}\right)^{1 / p}+\left(\sum_{n=N^{\prime}}^{\infty}\left|a_{n}^{N}\right|^{p}\right)^{1 / p}
$$

The first of these terms is a sum of non-negative terms over $n \geq N^{\prime}$, and so it is bounded above by the sum over $n \geq 1$ which is equal to $\left\|\mathbf{a}^{k}-\mathbf{a}^{N}\right\|_{p}$, which is $<\epsilon$ by Equation 3 (since $k \geq K \geq N^{\prime} \geq N$). And the second term is also $<\epsilon$, by Equation 4 . Whence, the last term in Equation 7 is also $<2 \epsilon$, and so we have shown that

$$
\forall \epsilon>0, \exists K \in \mathbb{N} \text { such that } \forall k \geq K\left\|\mathbf{a}^{k}-\mathbf{a}\right\|_{p}<4 \epsilon
$$

Of course, we should have been more clever and chosen all our constants in terms of $\epsilon / 4$ to get a clean ϵ in the end, but such tidying is not really necessary; 4ϵ is also arbitrarily small, and so we have shown that $\left(\mathbf{a}^{k}\right)_{k=1}^{\infty}$ does converge to a in ℓ^{p}. This concludes the proof that ℓ^{p} is complete. Whew!

Let us conclude by remarking that a very similar (though somewhat simpler) proof works for $p=\infty$; the details are left to the reader.

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

