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�p IS COMPLETE 

Let 1 ≤ p ≤ ∞, and recall the definition of the metric space �p: 
∞

For 1 ≤ p < ∞, �p = sequences a = (an)∞n=1 in R such that |an|p < ∞ ; 
n=1 

whereas �∞ consists of all those sequences a = (an)n
∞
=1 such that supn∈N |an| < ∞. We 

defined the p-norm as the function � · �p : �p → [0, ∞), given by � �1/p∞

�a�p = |an|p , for 1 ≤ p < ∞, 
n=1 

and �a�∞ = supn∈N |an|. In class, we showed that the function dp : �p × �p → [0, ∞) given 
by dp(a, b) = �a − b�p is actually a metric. We now proceed to show that (�p, dp) is a 
complete metric space for 1 ≤ p ≤ ∞. For convenience, we will work with the case p < ∞, 
as the case p = ∞ requires slightly different language (although the same ideas apply). 

Suppose that a1 , a2 , a3 , . . . is a Cauchy sequence in �p. Note, each term ak in the se
quence is a point in �p, and so is itself a sequence: 

a k = (a1 
k , a 2

k , a 3
k , . . .). 

k)∞Now, to say that (a k=1 is a Cauchy sequence in �p is precisely to say that 

∀� > 0 ∃K ∈ N s.t. ∀k,m ≥ K, �a k − a m�p < �. 

That is, for given � > 0 and sufficiently large k,m, we have 
∞

a k m p k m p < �p.| n − an | = �a − a �p 
n=1 

Now, the above series has all non-negative terms, and hence is an upper bound for any 
fixed term in the series. That is to say, for fixed n0 ∈ N, 

∞
k m k m|an0 
− an0 

| ≤ |an − an |p < �p, 
n=1 

and so we see that the sequence (an
k 

0 
)∞k=1 is a Cauchy sequence in R. But we know that R 

is a complete metric space, and thus there is a limit an0 ∈ R to this sequence. This holds 
for each n0 ∈ N. The following diagram illustrates what’s going on. 

a1 = a1 
1 a1 

2 a1 
3 a1 

4 · · · 
a2 = a2 

1 a2 
2 a2 

3 a2 
4 · · · 

a3 = a3 
1 a3 

2 a3 
3 a3 

4 · · · 
a4 = a4 

1 a4 
2 a4 

3 a4 
4 · · · 

. . . 
. . . 

. . . 
. . . . . . 

↓ ↓ ↓ ↓ 
a1 a2 a3 a4 · · · 

So, we have shown that, in this �p-Cauchy sequence of horizontal sequences, each vertical 
sequence actually converges. Hence, there is a sequence a = (a1, a2, a3, a4, . . .) to which 
“ak converges” in a vague sense. The sense is the “point-wise convergence” along vertical 
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lines in the above diagram. To be more precise, recall that a sequence a is a function 
a : N R, where we customarily write a(n) = an. What we have shown is that, if →
(a1 , a2 , a3 , . . .) is a Cauchy sequence of such �p functions, then there is a function a : N R 
such that ak converges to a point-wise; i.e. ak(n) → a(n) for each n ∈ N. 

→ 

Now, our goal is to find a point b ∈ �p such that ak b as k → ∞ in the sense of �p; 
k 

→
that is, such that �a − b�p → 0 as k →∞. The putative choice for this b is the sequence a 
given above. In order to show that one works, we need to show first that it is actually an 
�p sequence, and second that ak converges to a in �p sense, not just point-wise. 

To do this, it is convenient to first pass to a family of subsequences of the (an
k ), as fol

lows. Since (ak 
1 )
∞
k=1 converges to a1, we can choose k1 so that for k ≥ k1, |a k1 

1 − a1| < 1
2 . 

Having done so, and knowing that ak a2, we can choose a larger k2 so that for k ≥ k2, 
1 1we have ak < and ak < 

2 →
. Continuing this way iteratively, we can find an | 1 − a1| 4 | 2 − a2| 4 

increasing sequence of integers k1 < k2 < k3 < such that · · · 

for each j ∈ N, |a kn − an| < 2−j for n = 1, 2, . . . , j and k ≥ kj . (1) 

In particular, we have |an
kj − an| < 2−j for j ≥ n. That gives us the following. 

Lemma 1. The sequence a = (an)∞n=1 of point-wise limits of (ak)∞k=1 is in �p. 

Proof. Fix N ∈ N, and recall that the finite-dimensional versions of the �p-norms, � �1/pN

�(a1, . . . , aN )�p = |an|p 

n=1 

also satisfy the triangle inequality (i.e. dp(x, y) = �x − y�p is a metric on RN ). Hence, we 
can estimate the initial-segment of N terms of a as follows: 

an = (an − a kN ) + a kN ,n n 

and so ��N �1/p � 
N

�1/p � 
N

�1/p 

|an|p ≤ |an − a kN |p + |a kn 
N |p . (2)n 

n=1 n=1 n=1 

Now, the last term in Equation 2 is bounded by the actual �p-norm of the whole sequence 
akN ; that is, we can tack on the infinitely many more terms, � �1/p � �1/pN �� ∞

|an
kN |p ≤ |an

kN |p = �a kN �p. 
n=1 n=1 

Recall that (ak)∞k=1 is a Cauchy sequence in the metric space �p. We have proved that any 
Cauchy sequence in a metric space is bounded. Thus, there is a constant R independent of 
N such that �akN �p ≤ R. Combining this with Equation 1, we can therefore estimate the 
right-hand-side of Equation 2 by � 

N
�1/p � 

N
�1/p� � � �1/p|an|p ≤ (2−N )p + R = N 2−Np + R. 

n=1 n=1 
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Finally, the term N 2−Np 
�1/p 

= N1/p2−N converges to 0 as N → ∞ (remember your 
calculus!), and hence this sequence is also bounded by some constant S. In total, then, 
we have � �1/pN

|an|p ≤ R + S for all N ∈ N. 
n=1 �N pIn other words, n=1 |an| ≤ (R + S)p. The constant on the right does not depend on N ; 

it is an upper bound for the increasing sequence of partial sums of the series ∞ 
n=1 an = 

�a�p
p. Thus, we have �a�p ≤ R + S, and so a ∈ �p. 

| |p 

� 

So, we have shown that the putative limit a (the point-wise limit of the sequence (ak)∞k=1 
of points in �p) is actually an element of the metric space �p. But we have yet to show that 
it is the limit of the sequence (ak) in �p. That somewhat involved proof now follows. 

Proposition 2. Let (ak)∞k=1 be a Cauchy sequence in �p, and let a be its point-wise limit (which is 
in �p, by Lemma 1). Then �ak − a�p → 0 as k →∞. 

Proof. Let � > 0. Lemma 1 shows that a ∈ �p, which means that ∞ < ∞. Hence, 
by the Cauchy criterion, there is an N1 ∈ N so that 

n=1 |an|p 

∞

|an|p < �p. 
n=N1 

In addition, we know that (ak)∞ is �p-Cauchy, so there is N2 so that, whenever k,m ≥ N2,k=1 

�ak − am�p < �. Letting N = max{N1, N2}, we therefore have 
∞

|an|p < �p and �a N − a k�p < � ∀k ≥ N. (3) 
n=N 

Now, the sequence aN is in �p, and so we can apply the Cauchy criterion again: select N � 

large enough so that 
∞

|a N |p < �p. (4)n 

n=N � 

Note, we can always increase N � and still maintain this estimate, so we are free to chose 
N � ≥ N . 

We now use the constant N � we defined above in the bounds we will need later. Since 
ak an for each fixed n, we can choose K1 so that ak < �p/N � for k ≥ K1. Likewise, n → 

k 
| 1 − a1|

we can choose K2 so that |a2 − a2| < �p/N � for k ≥ K2. Continuing this way for N � steps, 
we can take K = max{K1, K2, . . . , KN � } and then we have 

�p 

|a kn − an| <
N � , for k ≥ K and n ≤ N �. (5) 

For good measure, we will also (increasing it if necessary) make sure that K ≥ N �. Now, 
for any k ≥ K, break up b = ak − a as follows: 

(bn)∞n=1 = (bn)N �−1 + (bn)∞n=1 n=N � . 
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(To be a little more pedantic, we are expressing bn = xn + yn where xn = bn when n < N � 

and = 0 when n ≥ N �, and yn = 0 when n < N � and = bn when n ≥ N �.) The triangle 
inequality for the p-norm then gives � 

N��−1 
�1/p �� 

�1/p∞

�a k − a�p ≤ |an
k − an|p + |an

k − an|p . (6) 
n=1 n=N � 

Equation 5 shows that, for k ≥ K, the first term here is � 
N��−1 

�1/p � 
N �−1

�1/p � �1/p 
k p 

� �p N � − 1 |an − an| ≤ 
N � = 

N � � < �. 
n=1 n=1 

For the second term in Equation 6, we use the triangle inequality for the �p-norm restricted 
to the range n ≥ N � to get � �1/p � �1/p � �1/p∞ ∞ ∞

|an
k − an|p ≤ |an

k |p + |an|p . 
n=N � n=N � n=N � 

Since N � ≥ N , Equation 3 shows that the second term here is < �. So, summing up the 
last two estimates, we have � �1/p∞

�a k − a�p ≤ 2� + |a kn|p , (7) 
n=N � 

whenever k ≥ K. So we need only show this final term is small. Here we make one more 
decomposition: ak

n = ak
n − aN

n + aN
n , and so once again applying the triangle inequality, � �1/p � �1/p � �1/p�∞ ∞ ∞

k p k N p N p|an| ≤ |an − an | + |a | .n 

n=N � n=N � n=N � 

The first of these terms is a sum of non-negative terms over n ≥ N �, and so it is bounded 
above by the sum over n ≥ 1 which is equal to �ak − aN �p, which is < � by Equation 3 
(since k ≥ K ≥ N � ≥ N ). And the second term is also < �, by Equation 4. Whence, the 
last term in Equation 7 is also < 2�, and so we have shown that 

∀� > 0, ∃K ∈ N such that ∀k ≥ K �a k − a�p < 4�. 

Of course, we should have been more clever and chosen all our constants in terms of �/4 
to get a clean � in the end, but such tidying is not really necessary; 4� is also arbitrarily 
small, and so we have shown that (ak)∞k=1 does converge to a in �p. This concludes the 
proof that �p is complete. Whew! � 

Let us conclude by remarking that a very similar (though somewhat simpler) proof 
works for p = ∞; the details are left to the reader. 



MIT OpenCourseWare
http://ocw.mit.edu 

18.100B Analysis I

Fall 2010


For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

