Practice Quiz 4

18.100B R2 Fall 2010

Closed book, no calculators.

YOUR NAME: _____

This is a 60 minute in-class exam. No notes, books, or calculators are permitted. Point values are indicated for each problem. Do all the work on these pages.

Problem 1. [15 points] Fix $n \in \mathbb{N}$ and let $f : [0, 1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{1}{2^n} & \text{if } x = \frac{k}{2^n} \text{ for } k \text{ odd } , 0 < k < 2^n, \\ 0 & \text{otherwise.} \end{cases}$$

Show that *f* is Riemann integrable on [0, 1], and that $\int_0^1 f(x) dx = 0$.

Problem 2. [10 points] Suppose that $f : [a, b] \to \mathbb{R}$ is continuous, nonnegative (i.e. $f(x) \ge 0$ for all $x \in [a, b]$), and $\int_a^b f(x) dx = 0$. Show that f(x) = 0 for all $x \in [a, b]$.

Problem 3. [5+5+10 points]

(a) Consider the sequence of partial sums

$$f_n(x) = \sum_{k=1}^n e^{-kx} \cos(kx).$$

For any a > 0 show that f_n converges uniformly on $[a, \infty)$.

(b) Let f(x) denote the limit of the sequence $f_n(x)$ in (a). Show that f(x) is continuous on $(0, \infty)$.

(c) Using the function $f : (0, \infty) \to \mathbb{R}$ from (b), show that $\int_1^{\infty} f(x) dx$ exists. In addition, find and prove an explicit upper bound such as 2 or $\frac{e}{e-1}$. (Hint: Do not integrate anything other than e^{-kx} .)

Problem 4. [20 points: +4 for each correct true/false, -4 for each incorrect true/false; you can opt for 'unsure' and gain up to +2 for giving your thoughts.] **a)** Suppose $f : [a, b] \rightarrow \mathbb{R}$ is differentiable on (a, b). Then f is Riemann integrable.

TRUE UNSURE FALSE

b) Let $f : [a, b] \to \mathbb{R}$ be Riemann integrable. Then the function $F : [a, b] \to \mathbb{R}$ given by $F(x) = \int_a^x f(t) dt$ is continuous.

TRUE UNSURE FALSE

c) If $f : [a,b] \to \mathbb{R}$ is Riemann integrable and satisfies f(x) < 0 for all $x \in [a,b] \cap \mathbb{R}$, then $\int_a^b f(x) dx < 0$.

TRUE UNSURE FALSE

d) If $f_n : [a,b] \to \mathbb{R}$ is a sequence of continuous functions, and $f_n \to f$ converges uniformly, then the limit f is uniformly continuous.

TRUE UNSURE FALSE

e) If $f_n : [a, b] \to \mathbb{R}$ is a sequence of almost everywhere continuous functions, and $f_n \to f$ converges uniformly, then the limit f is almost everywhere continuous.

TRUE UNSURE FALSE

MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.