1. Suppose for sake of contradiction that $x>0$. Then $\frac{1}{2} \cdot x>0$ because the product of two positive quantities is positive. Thus $\frac{x}{2}+0<\frac{x}{2}+\frac{x}{2}$ (because $y<z$ implies $x+y<x+z$ for all x), i.e., $\frac{x}{2}<x$. Also, since $\varepsilon:=\frac{x}{2}>0$ we have by assumption that $x \leq \frac{x}{2}$. However, for a strict order at most one of $x<\frac{x}{2}$ and $\frac{x}{2}<x$ can be true. Hence we obtain a contradiction to the assumption $x>0$. Thus $x \ngtr 0$. Since $x \geq 0$, this implies $x=0$, as desired.
2.(a) We use $2 x y \leq x^{2}+y^{2}$ (which follows from $\left.(x-y)^{2} \geq 0\right)$ and $a_{n} \geq 0$ to estimate

$$
0<\sqrt{a_{n} a_{n+1}} \leq \frac{1}{2}\left({\sqrt{a_{n}}}^{2}+{\sqrt{a_{n+1}}}^{2}\right)=\frac{1}{2} a_{n}+\frac{1}{2} a_{n+1} .
$$

Next, the partial sums of $\sum_{n=1}^{\infty} a_{n+1}$ are the same ones (shifted by one - see (b)) as for $\sum_{n=1}^{\infty} a_{n}$, and so by assumption both series converge. Hence by linearity for limits, the series $\sum_{n=1}^{\infty} \frac{1}{2} a_{n}+\frac{1}{2} a_{n+1}$ also converges. Now convergence of $\sum_{n=1}^{\infty} \sqrt{a_{n} a_{n+1}}$ follows from the comparison criterion.
(b) Since $a_{n+1} \leq a_{n}$ we obtain $0 \leq a_{n+1} \leq \sqrt{a_{n} a_{n+1}}$, so $\sum_{n=1}^{\infty} a_{n+1}$ converges by the comparison test. But now $\lim _{k \rightarrow \infty} \sum_{n=1}^{k} a_{n+1}$ exists iff $\lim _{k \rightarrow \infty} \sum_{n=0}^{k-1} a_{n+1}=\lim _{k \rightarrow \infty} \sum_{n=1}^{k} a_{n}$ exists; proving convergence of the latter.
3.(a) Both $f(x)=4 x(1-x)$ and $f(x)=1-|2 x-1|$ work nicely.
(b) No function: continuous functions take connected sets to connected sets.
(c) Define

$$
f(x)= \begin{cases}0, & x \leq 1 \\ 1, & x \geq 2\end{cases}
$$

This function is continuous on $[0,1] \cup[2,3]$ and $f([0,1] \cup[2,3])=\{0,1\}$.
(d) No function: suppose such a function f exists. There exists x_{1} for which $f\left(x_{1}\right)=1$ and x_{2} for which $f\left(x_{2}\right)=2$, so by the Intermediate Value Theorem there is x between x_{1} and x_{2} for which $f(x)=\sqrt{2}$, a contradiction. (Or, use connectedness again.)
(e) No function: continuous functions take compact sets to compact sets.
4. Given $\varepsilon>0$, by uniform convergence of $\left(f_{n}\right)$, we can choose some $N \in \mathbb{N}$ such that $n \geq N$ implies $\left|f_{n}(x)-f(x)\right|<\frac{\varepsilon}{3}$ for all $x \in E$. By uniform continuity of f_{N}, we can choose some δ such that $d(x, y)<\delta$ implies $\left|f_{N}(x)-f_{N}(y)\right|<\frac{\varepsilon}{3}$. Then for any $x, y \in E$ such that $d(x, y)<\delta$ we have

$$
\begin{aligned}
|f(x)-f(y)| & =\left|f(x)-f_{N}(x)+f_{N}(x)-f_{N}(y)+f_{N}(y)-f(y)\right| \\
& \leq\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)-f_{N}(y)\right|+\left|f_{N}(y)-f(y)\right| \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon,
\end{aligned}
$$

so f is uniformly continuous.
5. (see Melrose Test 2)
6. (see Melrose Test 2)
7.(a) For all $\varepsilon>0$, there exists a (countable) collection $\left\{B\left(x_{i}, r_{i}\right)\right\}$ of open balls such that $N \subset$ $\bigcup_{i} B\left(x_{i}, r_{i}\right)$ and $\sum_{i} r_{i}<\varepsilon$.
(b) We have $\{x \mid f(x) \neq f(x)\}=\emptyset$ has measure 0 , so $f \sim f$. The relation is symmetric since $\{x \mid g(x) \neq f(x)\}=\{x \mid g(x) \neq f(x)\}$. To check is transitivity assume $f \sim g$ and $g \sim h$. Observe that if $f(x) \neq h(x)$ then we must have either $f(x) \neq g(x)$ or $g(x) \neq h(x)$ (or both), so

$$
\{x \mid f(x) \neq h(x)\} \subseteq\{x \mid f(x) \neq g(x)\} \cup\{x \mid f(x) \neq g(x)\} .
$$

So we must show that unions and subsets of measure-0 sets have measure 0 . For subsets, just take a covering of the superset of measure 0 to cover its subset. For the union, take the union of two coverings of measure less than $\varepsilon / 2$ to cover the union with sets of total measure less than ε.
(c) Since f and g are both integrable, $f-g$ is integrable as well, and we are asked to show that $\int_{0}^{1} f-g=0$ given that $f-g=0$ almost everywhere. Since $f-g$ is integrable, the integral is equal to the infimum over all upper Riemann sums. Since $f-g$ is zero almost everywhere, every interval contains a point at which $f-g=0$, so the upper Riemann sum for any fixed partition is a sum of nonnegative numbers and thus nonnegative. The infimum of a set of nonnegative quantities must itself be nonnegative, so $\int_{0}^{1} f-g \geq 0$. However, we may apply identical reasoning to get that $\int_{0}^{1} g-f \geq 0$. Since these two quantities are negatives of each other, they both must equal 0 , as needed.
8.(a) Fix $\varepsilon>0$. For each f_{i}, choose a δ_{i} such that $d(x, y)<\delta_{i}$ implies $\left|f_{i}(x)-f_{i}(y)\right|<\varepsilon$ for all x, y. Then let $\delta=\min \left\{\delta_{i}\right\}>0$ and we have that for any $f_{i} \in \mathscr{F}$ and any x, y in the common domain that if $d(x, y)<\delta$ then $\left|f_{i}(x)-f_{i}(y)\right|<\varepsilon$, so \mathscr{F} is equicontinuous.
(b) Let $\delta=\varepsilon / n$. If $|x-y|<\delta$ then

$$
\left|f_{n}(x)-f_{n}(y)\right|=\left|\frac{x}{x+\frac{1}{n}}-\frac{y}{y+\frac{1}{n}}\right|=\frac{\frac{|x-y|}{n}}{\left|x+\frac{1}{n}\right| \cdot\left|y+\frac{1}{n}\right|} \leq \frac{\frac{|x-y|}{n}}{\frac{1}{n^{2}}}=n|x-y|<\varepsilon
$$

so f_{n} is uniformly continuous for all n.
(c) We have $f_{n}(0)=0$ for all n and $f_{n}(x) \rightarrow 1$ as $n \rightarrow \infty$ for any fixed $x \in(0,1]$, so $\left(f_{n}\right)$ converges pointwise to the function

$$
f(x)= \begin{cases}0, & x=0 \\ 1, & x \in(0,1]\end{cases}
$$

However, $f_{n}\left(\frac{1}{n}\right)=\frac{1}{2}$ for all n, so for all n there exists x such that $d\left(f_{n}(x), f(x)\right)>\frac{1}{3}$. Thus no subsequence of the $\left(f_{n}\right)$ can converge uniformly. (Alternatively, invoke problem 4 here: if convergence were uniform, the limit function would be uniformly continuous, when in fact it's not even continuous.) In addition, we have $0 \leq f_{n}(x) \leq 1$ for all $n \in \mathbb{N}$ and all $x \in[0,1]$, so $\left(f_{n}\right)$ is uniformly bounded. By Arzelà-Ascoli, any equicontinuous pointwise bounded sequence of continuous functions has a uniformly convergent subsequence, so it follows that our sequence of functions is not equicontinuous.
9. see Melrose Test 1 .. hence no solution here
10.(a) Choose some f such that $f\left(x_{0}\right)=c \neq 0$. Then if $d_{\infty}(f, g)<\frac{|c|}{2}$, it follows that

$$
\begin{aligned}
\left|g\left(x_{0}\right)\right| & =\left|g\left(x_{0}\right)-f\left(x_{0}\right)+f\left(x_{0}\right)\right| \\
& \geq\left|f\left(x_{0}\right)\right|-\left|f\left(x_{0}\right)-g\left(x_{0}\right)\right| \\
& \geq\left|f\left(x_{0}\right)\right|-\sup _{x \in X}|f(x)-g(x)| \\
& >|c|-\frac{|c|}{2} \\
& >0
\end{aligned}
$$

so $g\left(x_{0}\right) \neq 0$. Thus there is an open ball in K_{0}^{C} around every element of K_{0}^{C}, so K_{0}^{C} is open and thus K_{0} is closed.
(b) Denote the set of the previous part by $K_{0}(x)$. Then

$$
K_{1}=\bigcap_{x \in E} K_{0}(x)
$$

is an intersection of closed sets, and so closed. We showed on one of the problem sets that if two continuous functions agree on a dense subset of a metric space then they agree on the whole space, so it follows that actually $K_{1}=\{z\}$ where z is the function such that $z(x)=0$ for all x.
(c) We have that actually $B=B_{1}(z)$ is the open ball of radius 1 centered at the all-zero function z, and we've shown that an open ball in any metric space is an open set. (As a reminder of this general result: choose any $x \in B_{r}(z)$, and let $d=d(x, z)<r$. Then for any $y \in B_{r-d}(x)$ we have $d(z, y) \leq d(z, x)+d(x, y)<d+(r-d)=r$, so $y \in B_{r}(z)$, as needed.)

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

