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18.100B/C: Fall 2010

Solutions to Practice Final Exam


1. Suppose for sake of contradiction that x > 0. Then 1 x > 0 because the product of two positive 2 · 
quantities is positive. Thus x 

2 + 0 < x 
2 + x 

2 (because y < z implies x + y < x + z for all x), i.e., 
x x	 x< x. Also, since � := > 0 we have by assumption that x � . However, for a strict order 2 2 2 
at most one of x < x 

2 and x 
2 < x can be true. Hence we obtain a contradiction to the assumption 

x > 0. Thus x >→ 0. Since x � 0, this implies x = 0, as desired. 

2.(a) We use 2xy � x2 + y2 (which follows from (x − y)2 � 0) and an � 0 to estimate 

0 < 
�

anan+1 � 
1
(
�

an 
2 + 

�
an+1

2) = 
1 
an +

1 
an+1.2	 2 2 ∑	 ∑

Next, the partial sums of n
�
=1 an+1 are the same ones (shifted by one – see (b)) as for n

�
=1 an, and ∑

so by assumption both series converge. Hence by linearity for limits, the series � 1 + 1 ∑ n=1 2 an 2 an+1 

also converges. Now convergence of � �
anan+1 follows from the comparison criterion. n=1 ∑

(b) Since an+1 � an we obtain 0 � an+1 �
�

anan+1, so � converges by the comparison ∑k ∑k−1 
n=1 an+1 ∑ktest. But now limk�� n=1 an+1 exists iff limk�� n=0 an+1 = limk�� exists; proving n=1 an 

convergence of the latter. 

3.(a) Both f(x) = 4x(1 − x) and f(x) = 1 − |2x − 1| work nicely. 
(b) No function: continuous functions take connected sets to connected sets. 
(c) Define {

f(x) =	
0, x � 1, 

1, x � 2. 

This function is continuous on [0, 1] ∈ [2, 3] and f([0, 1] ∈ [2, 3]) = {0, 1}. 
(d) No function: suppose such a function f exists. There exists x1 for which f(x1) = 1 and x2 for 
which f(x2) = 2, so by the Intermediate Value Theorem there is x between x1 and x2 for which 
f(x) = 

�
2, a contradiction. (Or, use connectedness again.) 

(e) No function: continuous functions take compact sets to compact sets. 

4. Given � > 0, by uniform convergence of (fn), we can choose some N ⊂ N such that n � N 
implies |fn(x) − f(x) < � for all x ⊂ E. By uniform continuity of fN , we can choose some � such 3 
that d(x, y) < � implies |fN (x) − fN (y)| < . Then for any x, y ⊂ E such that d(x, y) < � we have 3 

|f(x) − f(y)| = |f(x) − fN (x) + fN (x) − fN (y) + fN (y) − f(y)| 
� |f(x) − fN (x)| + |fN (x) − fN (y)| + |fN (y) − f(y)| 

3 3	 3 

so f is uniformly continuous. 

5. (see Melrose Test 2) 

6. (see Melrose Test 2) 
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7.(a) For all � > 0, there exists a (countable) collection {B(xi, ri)} of open balls such that N ≤
B(xi, ri) and i ri < �.i 

(b) We have {x f(x) = f(x)} = ∞ has measure 0, so f ⊆ f . The relation is symmetric since 
{x | g(x) = f(x)}

|
= {x |

→ 
g(x) = f(x)}. To check is transitivity assume f ⊆ g and g ⊆ h. Observe → →

that if f(x) = h(x) then we must have either f(x) = g(x) or g(x) = h(x) (or both), so → → → 

{x | f(x) → | f(x) = g(x)} ∈ {x | f(x) = → g(x)}.= h(x)} � {x → 

So we must show that unions and subsets of measure-0 sets have measure 0. For subsets, just take 
a covering of the superset of measure 0 to cover its subset. For the union, take the union of two 
coverings of measure less than �/2 to cover the union with sets of total measure less than �. 
(c) Since f and g are both integrable, f − g is integrable as well, and we are asked to show that 

f − g = 0 given that f − g = 0 almost everywhere. Since f − g is integrable, the integral is 
equal to the infimum over all upper Riemann sums. Since f − g is zero almost everywhere, every 
interval contains a point at which f − g = 0, so the upper Riemann sum for any fixed partition is a 
sum of nonnegative numbers and thus nonnegative. The infimum of a set of nonnegative quantities ∫ 1must itself be nonnegative, so f − g � 0. However, we may apply identical reasoning to get that ∫ 1 0 

g − f � 0. Since these two quantities are negatives of each other, they both must equal 0, as 
needed. 

8.(a) Fix � > 0. For each fi, choose a �i such that d(x, y) < �i implies |fi(x) − fi(y)| < � for all 
x, y. Then let � = min{�i} > 0 and we have that for any fi ⊂ F and any x, y in the common 
domain that if d(x, y) < � then |fi(x) − fi(y) < �, so F is equicontinuous. 
(b) Let � = �/n. If |x − y| < � then 

| 

∑∪

∫ 1
0 

0 

|fn(x) − fn(y)| = 
x 

x + 1 
n 

− 
y


y + 1

n 

= 
|x−y|

n 
|x−y|

n 
1 = n|x − y| < �, 

x + 1 y + 1 
n 2·n n

so fn is uniformly continuous for all n. 
(c) We have fn(0) = 0 for all n and fn(x) ≥ 1 as n ≥ ∼ for any fixed x ⊂ (0, 1], so (fn) converges 
pointwise to the function 

f(x) =

{
0, x = 0 

1, x ⊂ (0, 1]. 

However, fn( n 
1 ) = 1

2 for all n, so for all n there exists x such that d(fn(x), f(x)) > 1
3 . Thus 

no subsequence of the (fn) can converge uniformly. (Alternatively, invoke problem 4 here: if 
convergence were uniform, the limit function would be uniformly continuous, when in fact it’s 
not even continuous.) In addition, we have 0 � fn(x) � 1 for all n ⊂ N and all x ⊂ [0, 1], so 
(fn) is uniformly bounded. By Arzelà-Ascoli, any equicontinuous pointwise bounded sequence of 
continuous functions has a uniformly convergent subsequence, so it follows that our sequence of 
functions is not equicontinuous. 

9. see Melrose Test 1 .. hence no solution here 
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10.(a) Choose some f such that f(x0) = c = 0. Then if → d�(f, g) < |2 
c| , it follows that 

|g(x0)| = |g(x0) − f(x0) + f(x0)| 
� |f(x0)| − |f(x0) − g(x0)| 
� |f(x0)| − sup |f(x) − g(x)|

x�X 

> |c| − 
|
2 
c|

> 0, 

so g(x0) = 0. Thus there is an open ball in K0 
C around every element of K0 

C , so K0 
C is open and →

thus K0 is closed. 
(b) Denote the set of the previous part by K0(x). Then ∩ 

K1 = K0(x) 
x�E 

is an intersection of closed sets, and so closed. We showed on one of the problem sets that if two 
continuous functions agree on a dense subset of a metric space then they agree on the whole space, 
so it follows that actually K1 = {z} where z is the function such that z(x) = 0 for all x. 
(c) We have that actually B = B1(z) is the open ball of radius 1 centered at the all-zero function 
z, and we’ve shown that an open ball in any metric space is an open set. (As a reminder of this 
general result: choose any x ⊂ Br(z), and let d = d(x, z) < r. Then for any y ⊂ Br−d(x) we have 
d(z, y) � d(z, x) + d(x, y) < d + (r − d) = r, so y ⊂ Br(z), as needed.) 
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