18.100B Fall 2010

Practice Quiz 4 Solutions
1.

- $L\left(f, P=\left(x_{i}\right)\right)=\sum_{i=1}^{n} \underbrace{\inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x)}_{\geq 0} \underbrace{\left(x_{i}-x_{i-1}\right)}_{>0} \geq 0$
$\Rightarrow L(f)=\sup _{P} L(f, P) \geq 0$
$\bullet U\left(f, P=\left(x_{i}\right)\right)=\sum_{i=1}^{n} \sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x)\left(x_{i}-x_{i-1}\right)$
Given $\epsilon>0$, pick a partition
$P^{\epsilon}=\left(0, \frac{1}{2^{n}}-\delta, \frac{1}{2^{n}}+\delta, \frac{3}{2^{n}}-\delta, \frac{3}{2^{n}}+\delta, \ldots, \frac{2^{n}-1}{2^{n}}-\delta, \frac{2^{n}-1}{2^{n}}+\delta, 1\right)$
with $\delta<\frac{1}{2^{n}}$ (hence $\frac{1}{2^{n}}+\delta<\frac{3}{2^{n}}-\delta$) and $\delta \leq \epsilon$, then
$U\left(f, P^{\epsilon}\right)=\underbrace{\sum_{k=1}^{2^{n}-1} \underbrace{\sup f}_{\frac{1}{2^{n}}} \cdot \underbrace{\Delta x_{i}}_{2 \delta}+\underbrace{0}_{\text {from other intervals }}=\frac{2^{n}-1}{2^{n-1}} \delta<2 \delta<\epsilon, ~(f))}_{\text {from intervals }\left[\frac{k}{2^{n}}-\delta, \frac{k}{2^{n}}+\delta\right]}$
Together with Rudin $(L(f) \leq U(f))$ this shows
$0 \leq L(f) \leq U(f) \leq \epsilon \forall \epsilon>0 \Rightarrow L(f)=U(f)=0$
$\Rightarrow f$ integrable, $\int_{0}^{1} f d x=L(f)=0$

2. f continuous \Rightarrow integrable $\Rightarrow \sup _{P} L(f, P)=L(f)=0$
$\Rightarrow \forall$ partitions $P, L(f, P) \leq 0$
Suppose by contradiction $f\left(x_{0}\right)>0$ for some $x_{0} \in[a, b]$,
then by continuity find $\delta>0$ s.t.
$\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\frac{1}{2} f\left(x_{0}\right)$
$\Rightarrow f(x) \geq f\left(x_{0}\right)-\frac{1}{2} f\left(x_{0}\right)=\frac{1}{2} f\left(x_{0}\right)$
Now consider any equidistant partition P with $\Delta x<\delta$, then
$L(f, P)=\sum_{i=1}^{n} \underbrace{\inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x)}_{\geq 0 \text { since } f(x) \geq 0} \Delta x \underbrace{\geq}_{\text {just looking at an interval that contains } x_{0}} \inf _{x \in\left[x_{\left.i_{0}-1, x_{i}\right]}\right.} f(x) \cdot \Delta x$
$\geq \frac{1}{2} f\left(x_{0}\right) \cdot \Delta x>0$
in contradiction to $L(f, P) \leq 0$
3.(a) $m>n$
$\left\|f_{n}-f_{m}\right\|_{\infty}=\left\|\sum_{k=n+1}^{m} e^{-k x} \cos (k x)\right\|_{\infty} \leq \sum_{k=n+1}^{m} \sup _{x \geq a} e^{-k x}|\cos k x| \leq \sum_{k=n+1}^{m} e^{-k a} \underset{n \rightarrow \infty}{\longrightarrow} 0$
since $\sum e^{-k a}=\sum\left(e^{-a}\right)^{k}$ converges due to $\left|e^{-a}\right|<1$
This shows uniform convergence by the "Cauchy criterion" (in Rudin).
(b) To show that f is continuous at $x_{0} \in(0, \infty)$, note that

- each f_{n} is continuous on $\left[\frac{x_{0}}{2}, 2 x_{0}\right.$]
- $f_{n} \rightarrow f$ uniformly on $\left[\frac{x_{0}}{2}, 2 x_{0}\right]$ by (a)

So, by Rudin, f is continuous on $\left[\frac{x_{0}}{2}, 2 x_{0}\right]$, which contains x_{0}.
(c)

$$
\begin{aligned}
& \int_{1}^{\infty} f(x) d x \underset{\text { by definition }}{=} \lim _{b \rightarrow \infty} \int_{1}^{b} f(x) d x \underset{\text { by Rudin }}{=} \lim _{b \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{1}^{b} f_{n}(x) d x \\
& \lim _{n \rightarrow \infty} \int_{1}^{b} f_{n}(x) d x \text { linearity of integral }_{=}^{\lim } \sum_{n \rightarrow \infty} \sum_{k=1} \int_{1}^{b} \underbrace{e^{-k x} \cos k x}_{|\cdot| \leq e^{-k x}} d x \text { exists by comparison with the }
\end{aligned}
$$

absolutely convergent series $\sum_{k=1}^{\infty} e^{-k}$, and

$$
\begin{aligned}
& \left|\int_{1}^{b} f(x) d x\right|=\left|\lim _{n \rightarrow \infty} \int_{1}^{b} f_{n}(x) d x\right| \leq \sum_{k=1}^{n} \int_{1}^{b} e^{-k x} d x=\sum_{k=1}^{n}\left[\frac{-1}{k} e^{-k x}\right]_{1}^{b} \leq \sum_{k=1}^{n} \frac{1}{k} e^{-k} \\
& \leq \sum_{k=1}^{n}\left(\frac{1}{e}\right)^{k} \leq \sum_{k=1}^{\infty}\left(\frac{1}{e}\right)^{k}=\frac{1}{1-\frac{1}{e}}=\frac{e}{e-1}
\end{aligned}
$$

Similarly, $\lim _{b \rightarrow \infty} \int_{1}^{b} f d x$ exists since for $b^{\prime} \geq b$

$$
\left|\int_{1}^{b^{\prime}} f d x-\int_{1}^{b} f d x\right|=\lim _{n \rightarrow \infty}\left|\int_{b}^{b^{\prime}} f_{n} d x\right| \leq \sum_{k=1}^{\infty} \frac{1}{k}\left(e^{-b k}-e^{-b^{\prime} k}\right) \leq \sum_{k=1}^{\infty}\left(e^{-b}\right)^{k}=\frac{1}{1-e^{-b}}
$$

converges to 0 as $b \rightarrow \infty$. (Hence the same holds for any sequence $b_{i} \rightarrow \infty$, making $\int_{1}^{b_{i}} f d x$ a Cauchy sequence. Completeness of \mathbb{R} then implies convergence as $i \rightarrow \infty$; and the limit for all sequences $b_{i} \rightarrow \infty$ is the same since otherwise one could make a divergence (oscillating) sequence.)

So $\int_{1}^{\infty} f d x$ exists, and $\int_{1}^{\infty} f d x=\lim _{b \rightarrow \infty} \int_{1}^{b} f d x \leq \lim _{b \rightarrow \infty} \frac{e}{e-1}=\frac{e}{e-1}$.

4.(a) FALSE

Differentiable implies continuous, but not bounded - e.g. $f(x)=x^{-1}$ on $[0,1]$ is differentiable on $(0,1)$.
(b) TRUE

See Rudin.
(c) TRUE
$L(f, P)=\sum \underbrace{\inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x)}_{\leq 0 \text { since any interval contains } x \in \mathbb{R} \backslash \mathbb{Q}} \cdot \Delta x_{i} \leq 0 \Rightarrow L(f)=\int f d x \leq 0$

(d) TRUE

The limit is continuous by Rudin $7 . .$. , and uniformly continuous since $[\mathrm{a}, \mathrm{b}$] is compact
(e) TRUE

Almost everywhere continuous \Longleftrightarrow Riemann integrable
So result follows from " $f_{n} \in \mathbb{R},\left\|f_{n}-f\right\|_{\infty} \rightarrow 0 \Rightarrow f \in \mathbb{R}$ "

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

