1.(a) $E \subset X$ is compact if, given any open cover $E \subset \bigcup_{\alpha \in A} U_{\alpha}$ by open sets $U_{\alpha} \subset X$ (with A any index set), one can find a finite subcover $E \subset \bigcup_{\alpha \in A^{\prime}} U_{\alpha}$, with $A^{\prime} \subset A$ a finite subset.
(b) $E=\left\{e_{1}, \ldots, e_{N}\right\}$

Given an open cover $E \subset \bigcup_{\alpha \in A} U_{\alpha}$, for $i=1, \ldots, N$ pick $\alpha_{i} \in A$ s.t. $e_{i} \in U_{\alpha_{i}}$, then $A^{\prime}:=\left\{\alpha_{1}, \ldots, \alpha_{N}\right\} \subset A$ is finite and $E \subset \bigcup_{\alpha \in A^{\prime}} U_{\alpha}$ is still a cover.
(c) $E=\mathbb{N} \subset \mathbb{R}$
(because $\mathbb{N} \subset \bigcup_{n \in \mathbb{N}} B_{1 / 2}(n)$ is an open cover with $m \in B_{1 / 2}(n) \Rightarrow m=n$, so if
$\mathbb{N} \subset \bigcup_{n \in A^{\prime}} B_{1 / 2}(n)$ then necessarily $m \in A^{\prime} \quad \forall m \Rightarrow A^{\prime}=\mathbb{N}$ infinite)
2.(a) By assumption we have $f: \mathbb{N} \rightarrow A, g: \mathbb{N} \rightarrow B$ bijections.

Define a surjection $h: \mathbb{N} \rightarrow A \cup B$ by $h(2 n-1)=f(n), h(2 n)=g(n)$.
Then we can make it a bijection $h^{\prime}: \mathbb{N} \rightarrow A \cup B$ by $h^{\prime}(1)=h(1), h^{\prime}(n+1)=h\left(m_{n}\right)$ with $m_{n}:=\min \left\{k \in \mathbb{N} \mid h(k) \notin\left\{h^{\prime}(1), \ldots, h^{\prime}(n)\right\}\right\}$
(m always exists because A infinite $\Rightarrow A \cup B$ infinite).
Similarly, define $f^{\prime}(n):=f\left(m_{n}\right)$ with $m_{n}:=\min \{k \in \mathbb{N} \mid f(k) \in A \cap B \backslash\{f(1), \ldots, f(n)\}\}$.
If for some $n \in \mathbb{N}, A \cap B \backslash\{f(1), \ldots, f(n)\}=\emptyset$, then $A \cap B$ is finite $(\sim\{1, \ldots, n\})$;
otherwise this defines a bijection $\mathbb{N} \rightarrow A \cap B$, so $A \cap B$ is countable.
(b) By definition,
$\left.\begin{array}{ll}\bullet & \forall s \in S \\ \bullet \forall t \in T & t \leq \sup S \\ & t \leq \sup T\end{array}\right\} \Rightarrow \forall s+t \in S+T \quad s+t \leq \sup S+\sup T$
So $\sup S+\sup T$ is an upper bound.
$\bullet \forall \gamma<\sup S \quad \gamma$ is not an upper bound, i.e. $\exists s \in S: \gamma<s$
$\bullet \forall \beta<\sup T \quad \beta$ is not an upper bound, i.e. $\exists t \in T: \beta<t$
\Rightarrow Given $\alpha<\sup S+\sup T$ write $\alpha=\gamma+\beta, \gamma<\sup S, \beta<\sup T$
$\binom{\gamma=\sup S-\frac{1}{2}(\sup S+\sup T-\alpha)}{\beta=\sup T-\frac{1}{2}(\sup S+\sup T-\alpha)}$
then $\exists s \in S, t \in T: \alpha=\gamma+\beta<s+t$,

$$
\stackrel{\Downarrow}{s+t \in S+T}
$$

so α is not an upper bound.

3.(a) Only 0

(Because $B_{r}(0) \cap E$ for $r>0$ always contains some $\frac{1}{n} \neq 0$. All other points are isolated, $\left.B_{1 / 2 n}\left(\frac{1}{n}\right) \cap E=\left\{\frac{1}{n}\right\}\right)$
(b)
\rightarrow Finite subsets (which never have limit points)
\rightarrow Infinite subsets that contain 0
(c) Finite subsets and infinite subsets that contain 0

Because $X \subset \mathbb{R}$ is compact (bounded and closed) and the compact subsets of a compact set are exactly the closed subsets.
4. (a) FALSE
$\operatorname{int}(\bar{A})$ does not contain isolated points of A
(b) FALSE

Not definite: e.g. $f(x)=x, g(x)=x^{2}, d(f, g)=|0-0|=0$ but $f \neq g$.
(c) TRUE

Because closed subsets of compact sets are compact
(d) FALSE

There is an uncountable subset $\{(x,-x) \mid x \in \mathbb{R}\} \simeq \mathbb{R}$
(e) TRUE
$\left.\begin{array}{l}x+y \in \mathbb{Q} \\ x-y \in \mathbb{Q}\end{array}\right\} \Rightarrow x, y \in \mathbb{Q}$, so the set is $\mathbb{Q} \times \mathbb{Q}=\bigcup_{q \in \mathbb{Q}}\{q\} \times \mathbb{Q}$,
which is countable as a countable union of countable sets.

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

