18.100B Fall 2010 Practice Quiz 1 Solutions

1.(a) $E \subset X$ is compact if, given any open cover $E \subset \bigcup U_{\alpha}$ by open sets $U_{\alpha} \subset X$ (with A any index set), one can find a finite subcover $E \subset \bigcup_{\alpha \in A'} U_{\alpha}$, with $A' \subset A$ a finite subset.

(b) $E = \{e_1, \ldots, e_N\}$ Given an open cover $E \subset \bigcup_{\alpha \in A} U_{\alpha}$, for i = 1, ..., N pick $\alpha_i \in A$ s.t. $e_i \in U_{\alpha_i}$, then $A' := \{\alpha_1, \ldots, \alpha_N\} \subset A$ is finite and $E \subset \bigcup_{\alpha \in A'} U_\alpha$ is still a cover.

(c) $E = \mathbb{N} \subset \mathbb{R}$ (because $\mathbb{N} \subset \bigcup_{n \in \mathbb{N}} B_{1/2}(n)$ is an open cover with $m \in B_{1/2}(n) \Rightarrow m = n$, so if $\mathbb{N} \subset \bigcup_{n \in \mathcal{M}} B_{1/2}(n)$ then necessarily $m \in A' \ \forall m \Rightarrow A' = \mathbb{N}$ infinite)

2.(a) By assumption we have $f : \mathbb{N} \to A, g : \mathbb{N} \to B$ bijections. Define a surjection $h: \mathbb{N} \to A \cup B$ by h(2n-1) = f(n), h(2n) = q(n). Then we can make it a bijection $h': \mathbb{N} \to A \cup B$ by $h'(1) = h(1), h'(n+1) = h(m_n)$ with $m_n := \min\{k \in \mathbb{N} | h(k) \notin \{h'(1), \dots, h'(n)\}\}$ (*m* always exists because A infinite $\Rightarrow A \cup B$ infinite).

Similarly, define $f'(n) := f(m_n)$ with $m_n := \min\{k \in \mathbb{N} | f(k) \in A \cap B \setminus \{f(1), \dots, f(n)\}\}$. If for some $n \in \mathbb{N}, A \cap B \setminus \{f(1), \dots, f(n)\} = \emptyset$, then $A \cap B$ is finite $(\sim \{1, \dots, n\});$ otherwise this defines a bijection $\mathbb{N} \to A \cap B$, so $A \cap B$ is countable.

(b) By definition, $\begin{array}{l} \bullet \forall s \in S \quad s \leq \sup S \\ \bullet \forall t \in T \quad t \leq \sup T \end{array} \end{array} \} \Rightarrow \forall s + t \in S + T \qquad s + t \leq \sup S + \sup T$ So $\sup S + \sup T$ is an upper bound. $\bullet \forall \gamma < \sup S$ γ is not an upper bound, i.e. $\exists s \in S : \gamma < s$ β is not an upper bound, i.e. $\exists t \in T : \beta < t$ $\bullet \forall \beta < \sup T$ \Rightarrow Given $\alpha < \sup S + \sup T$ write $\alpha = \gamma + \beta, \gamma < \sup S, \beta < \sup T$ $\begin{pmatrix} \gamma = \sup S - \frac{1}{2}(\sup S + \sup T - \alpha) \\ \beta = \sup T - \frac{1}{2}(\sup S + \sup T - \alpha) \\ \text{then } \exists s \in S, t \in T : \alpha = \gamma + \beta < s + t, \end{cases}$ $s + t \in S + T$

so α is not an upper bound.

3.(a) Only 0

(Because $B_r(0) \cap E$ for r > 0 always contains some $\frac{1}{n} \neq 0$. All other points are isolated, $B_{1/2n}(\frac{1}{n}) \cap E = \{\frac{1}{n}\}$)

(b)

 \rightarrow Finite subsets (which never have limit points)

 \rightarrow Infinite subsets that contain 0

(c) Finite subsets and infinite subsets that contain 0

Because $X \subset \mathbb{R}$ is compact (bounded and closed) and the compact subsets of a compact set are exactly the closed subsets.

4.(a) FALSE int (\overline{A}) does not contain isolated points of A

(b) FALSE Not definite: e.g. $f(x) = x, g(x) = x^2, d(f,g) = |0-0| = 0$ but $f \neq g$.

(c) TRUE

Because closed subsets of compact sets are compact

(d) FALSE There is an uncountable subset $\{(x, -x) | x \in \mathbb{R}\} \simeq \mathbb{R}$

(e) TRUE $x + y \in \mathbb{Q}$ $x - y \in \mathbb{Q}$ $\} \Rightarrow x, y \in \mathbb{Q}$, so the set is $\mathbb{Q} \times \mathbb{Q} = \bigcup_{q \in \mathbb{Q}} \{q\} \times \mathbb{Q}$,

which is countable as a countable union of countable sets.

MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.